# Math 114 Fall 2017 <br> Calculus I HW 1 <br> Updated Sept 2 <br> Due Wednesday, September 6 

1. (a) Find two real numbers that solve $x^{2}+7 x+5=0$.
(b) Factor $x^{3}-27$.
2. Based on the graphs below, estimate the following limits:
(a) $\lim _{x \rightarrow 1} f(x)$
(b) $\lim _{x \rightarrow-2} g(x)$
(c) $\lim _{x \rightarrow 1} h(x)$
(d) $\lim _{x \rightarrow 1} j(x)$


Figure 1: $f(x)$


Figure 2: $g(x)$


Figure 3: $h(x)$


Figure 4: $j(x)$
3. If $|f(x)| \leq|x|$ and $|g(x)| \leq 7+x^{2}$, what can we say about $|f(x)+g(x)|$ ?
4. If $|f(x)| \geq 7$ and $|g(x)| \leq 3$, what can we say about $|f(x)+g(x)|$ ?
5. *
(a) Find a pair of real numbers $x$ and $y$ such that $|x+y|<|x|+|y|$.
(b) Find a pair of real numbers $x$ and $y$ such that $|x+y|=|x|+|y|$.
(c) Find a pair of real numbers $x$ and $y$ such that $|x+y|>x+y$.
6. *
(a) Find a pair of real numbers $x$ and $y$ such that $|x+y|>|x|-|y|$.
(b) Find a pair of real numbers $x$ and $y$ such that $|x+y|=|x|-|y|$.
(c) Find a pair of real numbers $x$ and $y$ such that $|x+y|<x-y$.
7. Let $f(x)=2 x+1$, and let $L=3$.
(a) Suppose we have an error margin of $\epsilon=1 / 10$, that is, we would like the distance between $f(x)$ and $L$ to be less than $1 / 10$. What open interval does $x$ need to be in to make this happen?
(b) Now suppose our error margin is $\epsilon=1 / 50$. Give an open interval for $x$ so that the distance between $f(x)$ and $L$ is less than $1 / 50$ for every $x$ in the interval.

