Lab 3 Tuesday September 12

Piecewise Functions

First, go to the course website, and download the "Plot Piecewise file". You should get a file called PlotPiecewise.nb. Open this in Mathematica. You will get a notebook with a big pile of code. You don't need to read the code, but click anywhere inside the code, and hit shift-enter to evaluate. This will give us a PlotPiecewise command to replace our usual Plot command.

We can define a piecewise function in Mathematica with the Piecewise command.

1. Define a piecewise function $f(x)=\left\{\begin{array}{cl}-x^{2} & x<0 \\ x^{2} & x \geq 0\end{array}\right.$ with the command
$f\left[x_{-}\right]:=$Piecewise $\left[\left\{\left\{-x^{\wedge} 2, x<0\right\},\left\{x^{\wedge} 2, x>=0\right\}\right\}\right]$
(notice that in Mathematica we use $>=$ for \geq and $<=$ for \leq).
2. Look at the function and estimate the limit at 0 . Then use the command Limit $[\mathrm{f}[\mathrm{x}], \mathrm{x}->0$] to have Mathematica compute the limit. Then plot the function with domain $[-4,4]$, with the command PlotPiecewise[f[x], $\{x,-4,4\}$].
3. Define a new function $g(x)=\left\{\begin{array}{cc}-x^{2} & x<-2 \\ x^{2} & x>-2\end{array}\right.$ and plot it with the PlotPiecewise command. What is the limit at -2 ?
Use the command Limit $[\mathrm{g}[\mathrm{x}], \mathrm{x}->-2]$ to have Mathematica compute the limit. What happens? What do you think Mathematica is doing?
4. Come up with another piecewise function to test your theory, and have Mathematica compute the limit there.
5. Test the previous functions, but add the option Direction $->1$. For instance, run the command Limit $[\mathrm{g}[\mathrm{x}], \mathrm{x}->-2$, Direction->1] What do you think this changes? Now try with Direction->-1 instead. (Yes, this is backwards from how we'd like it).
6. Now plot f and g on one graph with domain $[-4,4]$. What happens? The graph should look a little odd.

Bonus: Define the absolute value function as a piecewise function and plot it.

Plot each of the following functions. Can you find a point where it looks like no limit exists? Try to plot a pair of horizontal lines that the function never stays between.
1.

$$
H(t)= \begin{cases}0 & t<0 \\ 1 & t \geq 0\end{cases}
$$

2.

$$
f(x)=\left\{\begin{array}{cc}
x & x<1 \\
x+2 & x \geq 1
\end{array}\right.
$$

3.

$$
g(x)=\left\{\begin{array}{cc}
x^{2}+x+3 & x<-2 \\
x^{5}-1 & x \geq-2
\end{array}\right.
$$

4.

$$
h(x)=\left\{\begin{array}{cc}
x-1 & x<-1 \\
4-2 x & x \geq-2
\end{array}\right.
$$

