Lab 4
 Tuesday September 19

Infinite Limits

Look at the following functions and before graphing them guess:

1. At which points do you expect the function outputs to get very large? Very negative?
2. Plot the functions together with the functions 10 and -10 and see if you can restrict the domain until the function is always above/below that line. What if you use 100 and -100 instead?
3. What happens when the inputs get large? Try plotting with the domain $\{x, 100,200\}$ or $\{x,-200,-100\}$.
4. Do you expect to find any zeroes?

Then plot the functions with the Mathematica Plot command. Remember to include a domain!

Coding tips:

- The horizontal asymptotes might be easier to see if the domain is large.
- You can download the "Plot Piecewise Code" from the course website to get a much better view of these graphs, using PlotPiecewise instead of Plot But this will not work well when you're plotting more than one function at once.
- Remember you can use the PlotRange option with Plot [f $[x],\{x,-5,5\}, P l o t R a n g e->\{-15,15\}]$ (or with different numbers) to fix the height shown on the graph. This can be useful if too much information is hidden by the scale.
- Pay attention to parentheses! $1 / \mathrm{x}+1$ is not the same thing as $1 /(\mathrm{x}+1)$.
(a) $1 /\left(x^{\wedge} 2-5 x+6\right)$
(h) $\operatorname{Tan}[x]$
(b) $1 /\left(x^{\wedge} 4+9 x^{\wedge} 3+29 x^{\wedge} 2+39 x+18\right)$
(i) $\mathrm{x} * \operatorname{Tan}[\mathrm{x}]$
(c) $(x-1)^{\wedge}(-2)(x-2)^{\wedge}(-2)$
(j) $\operatorname{Csc}[\mathrm{x}]$
(d) $(x-1)^{\wedge}(2) /(x-2)^{\wedge} 2$
(k) $\mathrm{x} * \operatorname{Csc}[\mathrm{x}]$
(e) $(x+1) /(\operatorname{Abs}[x]-1)$
(l) $x-x^{\wedge} 2$
(f) $(x+1) / \operatorname{Abs}[x-1]$
(Why do these two look so different?) (m) $1 /\left(\mathrm{x}-\mathrm{x}^{\wedge} 2\right)$
(g) $\left(2 x^{\wedge} 2+3 \mathrm{x}+1\right) /(\operatorname{Abs}[\mathrm{x}] * \mathrm{x}+1)$
(n) $\operatorname{Sqrt}\left[\mathrm{x}^{\wedge} 2+1\right]-\mathrm{x}$

