Lab 4 Tuesday September 19

Infinite Limits

Look at the following functions and before graphing them guess:

- 1. At which points do you expect the function outputs to get very large? Very negative?
- 2. Plot the functions together with the functions 10 and -10 and see if you can restrict the domain until the function is always above/below that line. What if you use 100 and -100 instead?
- 3. What happens when the inputs get large? Try plotting with the domain $\{x,100,200\}$ or $\{x,-200,-100\}$.
- 4. Do you expect to find any zeroes?

Then plot the functions with the Mathematica Plot command. Remember to include a domain!

Coding tips:

- The horizontal asymptotes might be easier to see if the domain is large.
- You can download the "Plot Piecewise Code" from the course website to get a much better view of these graphs, using PlotPiecewise instead of Plot But this will not work well when you're plotting more than one function at once.
- Remember you can use the PlotRange option with Plot[f[x],{x,-5,5},PlotRange->{-15,15}] (or with different numbers) to fix the height shown on the graph. This can be useful if too much information is hidden by the scale.
- Pay attention to parentheses! 1/x+1 is not the same thing as 1/(x+1).
- (a) $1/(x^2-5x+6)$
- (b) $1/(x^4+9x^3+29x^2+39x+18)$
- (c) $(x-1)^{(-2)} (x-2)^{(-2)}$
- (d) $(x-1)^(2) / (x-2)^2$
- (e) (x+1)/(Abs[x]-1)
- (f) (x+1)/Abs[x -1] (Why do these two look so different?)
- (g) $(2x^2 + 3x + 1)/(Abs[x] * x + 1)$

- (h) Tan[x]
- (i) x * Tan[x]
- (i) Csc[x]
- (k) x * Csc[x]
- (1) $x x^2$
- $(m) 1/(x x^2)$
- (n) $Sqrt[x^2+1]-x$