Problem 1. (a) Use the definition of limit to prove that $\lim _{x \rightarrow 2} \frac{1}{x+3}=\frac{1}{5}$.
(b) Use the definition of limit to prove that $\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}=+\infty$.

Problem 2. (a) Use the Squeeze Theorem to show that $\lim _{x \rightarrow 5}(x-5) \sin \left(\frac{x^{2}+1}{x-5}\right)=0$.
(b) Compute $\lim _{x \rightarrow 25} \frac{\sqrt{x}-5}{x-25}$
(c) Compute $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{\sin ^{2}(x)}$

Problem 3. (a) Directly from the definition, compute $f^{\prime}(1)$ where $f(x)=\sqrt{x+3}$.
(b) Compute $g^{\prime}(x)$ where $g(x)=\ln \left|\frac{e^{\arctan \left(x^{2}\right)}-5}{\sqrt[4]{x^{2}+1}}\right|$.
(c) Find a tangent line to the function $f(x)=\frac{e^{x}}{x}$ at the point given by $x=2$.

Problem 4. (a) Directly from the definition, compute $f^{\prime}(x)$ where $f(x)=\frac{1}{x-7}$.
(b) Write a tangent line to the curve $y^{2}=x^{x \cos (x)}$ at the point $(\pi / 2,-1)$.
(c) Find y^{\prime} if $e^{y}+\ln (y)=x^{2}+1$.

Problem 5. (a) A cone with height h and base radius r has volume $\frac{1}{3} \pi r^{2} h$. Suppose we have an inverted conical water tank, of height 4 m and radius 6 m . Water is leaking out of a small hole at the bottom of the tank. If the current water level is 2 m and the water level is dropping at $\frac{1}{9 \pi}$ meters per minute, what volume of water leaks out every minute?
(b) Use two iterations of Newton's method, starting at 0 , to estimate the root of $e^{x}-3 x$.
(c) Let $g(x)=\sqrt[5]{x^{9}+x^{7}+x+1}$. Find $\left(g^{-1}\right)^{\prime}(1)$.

Problem 6. (a) If $f(x)=\sqrt{x}+\tan (\pi x)$, use a linear approximation centered at 4 to estimate $f(4.1)$.
(b) If $g(x)=\cos (x)$, use a quadratic approximation centered at 0 to estimate $g(.1)$.
(c) Let $g^{\prime}(x)=g(x)+3 x$, and $g(2)=4$. Use two steps of Euler's method to estimate $g(4)$. Is this an overestimate or an underestimate?

Problem 7. (a) Find the absolute extrema of $f(x)=3 x^{4}-20 x^{3}+24 x^{2}+7$ on $[0,5]$.
(b) Find all the critical points of $g(x)=\ln \left(x^{3}+9 x^{2}+27 x\right)$.
(c) Classify the relative extrema of $h(x)=\sqrt[3]{x}(x+4)$

Problem 8. (a) Find all the critical points of $g(x)=\frac{x^{2}-8}{x+3}$
(b) If $-1 \leq f^{\prime}(x) \leq 3$ and $f(0)=0$, what can you say about $f(4)$? Assume f is continuous and differentiable.
(c) Prove that $x^{2}-\left(e^{2}+1\right) \ln (x)$ has at least two real roots.

Problem 9. Let $j(x)=x^{4}-14 x^{2}+24 x+6$. We can compute $j^{\prime}(x)=4(x+3)(x-1)(x-2)$ and $j^{\prime \prime}(x)=4\left(3 x^{2}-7\right)$. Sketch a graph of j.

Problem 10. Let $g(x)=\arctan \left(x^{2}+x\right)$. We can compute that $g^{\prime}(x)=\frac{2 x+1}{1+\left(x^{2}+x\right)^{2}}$ and

$$
g^{\prime \prime}(x)=\frac{-6 x^{4}-12 x^{3}-8 x^{2}-2 x+2}{\left(1+\left(x^{2}+x\right)^{2}\right)^{2}}
$$

Sketch a graph of g.

