Math 114 Practice Test 1

Instructor: Jay Daigle

Problem 1.

(a) Directly from the definition of a limit, compute with proof $\lim_{x\to -2} \frac{x}{x+4}$

(b) Directly from the definition, compute with proof $\lim_{x\to 3} \frac{2x^2-10x+12}{x-3}$.

Problem 2.

Let

$$f(x) = \begin{cases} 5 & x < -1\\ 2 & x > -1 \end{cases}$$

(a) Directly from the definition, compute with proof $\lim_{x\to 1} f(x)$.

(b) Directly from the definition of a limit, prove that $\lim_{x\to -1} f(x)$ does not exist.

Problem 3.

Let

$$g(x) = \begin{cases} x-3 & x < 3\\ 2x+1 & x > 3 \end{cases}$$

(a) Directly from the definition, compute with proof $\lim_{x\to 0}g(x).$

(b) Directly from the definition of a limit, prove that $\lim_{x\to 3} g(x)$ does not exist.

Problem 4. (a) Directly from the definition, prove that $\lim_{x\to-\infty} \frac{x}{x-3} = 1$.

(b) Directly from the definition, prove that $\lim_{x\to -4} \frac{x}{4+x} = \pm \infty$.

Problem 5.

(a) Directly from the definition, prove that $\lim_{x\to+\infty} x^2 + x + 1 = +\infty$.

(b) Directly from the definition, prove that $\lim_{x\to -2} \frac{x}{(x+2)^2} = -\infty$.