Math 114 Practice Test 1 Solutions

Instructor: Jay Daigle

Problem 1.

(a) Directly from the definition of a limit, compute with proof $\lim _{x \rightarrow-2} \frac{x}{x+4}$ Solution: We guess -1 .

Let $\epsilon>0$ and let $\delta \leq \underline{1, \epsilon / 2}$. Then if $0<|x+2|<\delta$, we compute

$$
\left|\frac{x}{x+4}+1\right|=\left|\frac{2 x+4}{x+4}\right|=\frac{2|x+2|}{|x+4|}
$$

And we compute

$$
|x+4|=|(x+2)+2| \geq 2-|x+2|>2-\delta \geq 1
$$

by the reverse triangle inequality. So

$$
\left|\frac{x}{x+4}+1\right|=\frac{2|x+2|}{|x+4|}<\frac{2 \delta}{1}<\epsilon
$$

(b) Directly from the definition, compute with proof $\lim _{x \rightarrow 3} \frac{2 x^{2}-10 x+12}{x-3}$.

Solution: Let $\epsilon>0$ and set $\delta \leq \underline{\epsilon / 2}$. Then if $0<|x-3|<\delta$ then

$$
\begin{aligned}
\left|\frac{2 x^{2}-10 x+12}{x-3}-2\right| & =\left|\frac{2(x-3)(x-2)}{x-3}-2\right| \\
& =|2(x-2)-2|=2|x-3|<2 \delta \leq \epsilon
\end{aligned}
$$

Problem 2.

Let

$$
f(x)= \begin{cases}5 & x<-1 \\ 2 & x>-1\end{cases}
$$

(a) Directly from the definition, compute with proof $\lim _{x \rightarrow 1} f(x)$.

Solution: Let $\epsilon>0$ and set $\delta=\underline{2}$. Then if $0<|x-1|<\delta$, we see that $x>-1$ and thus we have

$$
|f(x)-2|=|2-2|=0<\epsilon
$$

(b) Directly from the definition of a limit, prove that $\lim _{x \rightarrow-1} f(x)$ does not exist.

Solution: Set $\epsilon=1$ and suppose $\delta>0$. Suppose $\lim _{x \rightarrow-1} f(x)=L$. Then set $x_{1}=-1+\delta / 2, x_{2}=$ $-1-\delta / 2$, and we have

$$
\begin{aligned}
\epsilon>\left|f\left(x_{1}\right)-L\right| & =|f(-1+\delta / 2)-L|=|2-L| \\
\epsilon>\left|f\left(x_{2}\right)-L\right| & =|f(-1-\delta / 2)-L|=|5-L| \\
2 \epsilon & >|L-2|+|5-L| \geq|L-2+5-L|=|3|=3
\end{aligned}
$$

Thus we have $3<2 \epsilon=2$ which is impossible.

Problem 3.

Let

$$
g(x)=\left\{\begin{array}{cc}
x-3 & x<3 \\
2 x+1 & x>3
\end{array}\right.
$$

(a) Directly from the definition, compute with proof $\lim _{x \rightarrow 0} g(x)$.

Solution: Let $\epsilon>0$ and set $\delta \leq \underline{3, \epsilon}$. Then if $0<|x-0|<\delta$ we have $x<3$ and thus we compute

$$
|g(x)+3|=|x-3+3|=|x|<\delta \leq \epsilon
$$

Thus the limit is -3 .
(b) Directly from the definition of a limit, prove that $\lim _{x \rightarrow 3} g(x)$ does not exist.

Solution:

Suppose $\lim _{x \rightarrow 3} g(x)=L$. Set $\epsilon=\underline{3}$ and let $\delta>0$. Let $x_{1}=3-\delta / 2$ and $x_{2}=3+\delta / 2$. Then we have

$$
\begin{aligned}
\epsilon & >\left|g\left(x_{1}\right)-L\right|=|3-\delta / 2-3-L|=|-\delta / 2-L|=|L+\delta / 2| \\
\epsilon & >\left|g\left(x_{2}\right)-L\right|=|2(3+\delta / 2)+1-L|=|7+\delta-L|=|L-7-\delta| \\
2 \epsilon & >|-\delta / 2-L|+|L-7-\delta| \geq|-7-3 \delta / 2|=7+3 \delta / 2>7
\end{aligned}
$$

Since $\epsilon=3$ this gives us $6>7$, which impossible. So no such limit exists.
Problem 4. (a) Directly from the definition, prove that $\lim _{x \rightarrow-4} \frac{x}{4+x}= \pm \infty$.
Solution: Let $N>0$ and set $\delta \leq \underline{1,3 / N}$. Then if $0<|x+4|<\delta$, we have

$$
\left|\frac{x}{4+x}\right|=\frac{|x|}{|x+4|}>\frac{|x|}{\delta}
$$

We observe that $|x|=|x+4-4| \geq 4-|x+4| \geq 4-\delta \geq 3$, which gives us

$$
\left|\frac{x}{4+x}\right|=\frac{|x|}{|x+4|}>\frac{|x|}{\delta} \geq \frac{3}{\delta}>\frac{3}{3 / N}=N
$$

(b) Directly from the definition, prove that $\lim _{x \rightarrow-2} \frac{x}{(x+2)^{2}}=-\infty$.

Solution: Let $N>0$, and set $\delta \leq \underline{1,1 / \sqrt{N}}$. Then if $0<|x+2|<\delta$, then

$$
\begin{aligned}
(x+2)^{2} & <\delta^{2} \leq 1 / N \\
\frac{1}{(x+2)^{2}} & >\frac{1}{\delta^{2}} \geq N \\
x & =(x+2)-2<\delta-2 \leq 1-2=-1 \\
\frac{x}{(x+2)^{2}} & <-N
\end{aligned}
$$

Problem 5. Compute the following limits, showing each step and naming each limit law you use.
(a)

$$
\lim _{x \rightarrow 4} \sqrt{x^{2}-x-3}+\frac{2}{x}
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 4} \sqrt{x^{2}-x-3}+\frac{2}{x} & =\lim _{x \rightarrow 4} \sqrt{x^{2}-x-3}+\lim _{x \rightarrow 4} \frac{2}{x} & & \text { Additivity } \\
& =\sqrt{\lim _{x \rightarrow 4} x^{2}-x-3}+\lim _{x \rightarrow 4} \frac{2}{x} & & \text { Exponents } \\
& =\sqrt{\lim _{x \rightarrow 4} x^{2}-\lim _{x \rightarrow 4} x-\lim _{x \rightarrow 4} 3}+\lim _{x \rightarrow 4} \frac{2}{x} & & \text { Additivity } \\
& =\sqrt{\left(\lim _{x \rightarrow 4} x\right)^{2}-\lim _{x \rightarrow 4} x-\lim _{x \rightarrow 4} 3}+\lim _{x \rightarrow 4} \frac{2}{x} & & \text { Exponents } \\
& =\sqrt{\left(\lim _{x \rightarrow 4} x\right)^{2}-\lim _{x \rightarrow 4} x-\lim _{x \rightarrow 4} 3}+\frac{\lim _{x \rightarrow 4} 2}{\lim _{x \rightarrow 4} x} & & \text { Quotients } \\
& =\sqrt{(4)^{2}-4-\lim _{x \rightarrow 4} 3}+\frac{\lim _{x \rightarrow 4} 2}{4} & & \text { Identity } \\
& =\sqrt{(4)^{2}-4-3}+\frac{2}{4} & & \text { Constants } \\
& =\sqrt{16-4-3}+\frac{2}{4}=3+\frac{1}{2} & & \text { Arithmetic }
\end{aligned}
$$

(b)

$$
\lim _{x \rightarrow 1} \frac{x^{2}+4 x-5}{x-1}
$$

Solution:

$$
\begin{array}{rlr}
\lim _{x \rightarrow 1} \frac{x^{2}+4 x-5}{x-1} & =\lim _{x \rightarrow 1} \frac{(x+5)(x-1)}{x-1} & \text { Arithmetic } \\
& =\lim _{x \rightarrow 1} x+5 & \text { Almost Identical Functions } \\
& =\lim _{x \rightarrow 1} x+\lim _{x \rightarrow 1} 5 & \text { Additivity } \\
& =1+\lim _{x \rightarrow 1} 5 & \text { Identity } \\
& =1+5 & \text { Constants } \\
& =6 &
\end{array}
$$

