
Math 114 Practice Test 1 Solutions

Instructor: Jay Daigle

Problem 1.

(a) Directly from the definition of a limit, compute with proof limx→−2
x

x+4 Solution: We guess −1.

Let ε > 0 and let δ ≤ 1, ε/2. Then if 0 < |x+ 2| < δ, we compute∣∣∣∣ x

x+ 4
+ 1

∣∣∣∣ =

∣∣∣∣2x+ 4

x+ 4

∣∣∣∣ =
2|x+ 2|
|x+ 4|

And we compute

|x+ 4| = |(x+ 2) + 2| ≥ 2− |x+ 2| > 2− δ ≥ 1

by the reverse triangle inequality. So∣∣∣∣ x

x+ 4
+ 1

∣∣∣∣ =
2|x+ 2|
|x+ 4|

<
2δ

1
< ε.

(b) Directly from the definition, compute with proof limx→3
2x2−10x+12

x−3 .

Solution: Let ε > 0 and set δ ≤ ε/2. Then if 0 < |x− 3| < δ then∣∣∣∣2x2 − 10x+ 12

x− 3
− 2

∣∣∣∣ =

∣∣∣∣2(x− 3)(x− 2)

x− 3
− 2

∣∣∣∣
= |2(x− 2)− 2| = 2|x− 3| < 2δ ≤ ε.

Problem 2.
Let

f(x) =

{
5 x < −1
2 x > −1

(a) Directly from the definition, compute with proof limx→1 f(x).

Solution: Let ε > 0 and set δ = 2. Then if 0 < |x− 1| < δ, we see that x > −1 and thus we have

|f(x)− 2| = |2− 2| = 0 < ε.

(b) Directly from the definition of a limit, prove that limx→−1 f(x) does not exist.

Solution: Set ε = 1 and suppose δ > 0. Suppose limx→−1 f(x) = L. Then set x1 = −1 + δ/2, x2 =
−1− δ/2, and we have

ε > |f(x1)− L| = |f(−1 + δ/2)− L| = |2− L|
ε > |f(x2)− L| = |f(−1− δ/2)− L| = |5− L|

2ε > |L− 2|+ |5− L| ≥ |L− 2 + 5− L| = |3| = 3

Thus we have 3 < 2ε = 2 which is impossible.
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Problem 3.
Let

g(x) =

{
x− 3 x < 3
2x+ 1 x > 3

(a) Directly from the definition, compute with proof limx→0 g(x).

Solution: Let ε > 0 and set δ ≤ 3, ε. Then if 0 < |x− 0| < δ we have x < 3 and thus we compute

|g(x) + 3| = |x− 3 + 3| = |x| < δ ≤ ε.

Thus the limit is −3.

(b) Directly from the definition of a limit, prove that limx→3 g(x) does not exist.

Solution:

Suppose limx→3 g(x) = L. Set ε = 3 and let δ > 0. Let x1 = 3− δ/2 and x2 = 3 + δ/2. Then we have

ε > |g(x1)− L| = |3− δ/2− 3− L| = | − δ/2− L| = |L+ δ/2|
ε > |g(x2)− L| = |2(3 + δ/2) + 1− L| = |7 + δ − L| = |L− 7− δ|

2ε > | − δ/2− L|+ |L− 7− δ| ≥ | − 7− 3δ/2| = 7 + 3δ/2 > 7.

Since ε = 3 this gives us 6 > 7, which impossible. So no such limit exists.

Problem 4. (a) Directly from the definition, prove that limx→−4
x

4+x = ±∞.

Solution: Let N > 0 and set δ ≤ 1, 3/N . Then if 0 < |x+ 4| < δ, we have∣∣∣∣ x

4 + x

∣∣∣∣ =
|x|
|x+ 4|

>
|x|
δ
.

We observe that |x| = |x+ 4− 4| ≥ 4− |x+ 4| ≥ 4− δ ≥ 3, which gives us∣∣∣∣ x

4 + x

∣∣∣∣ =
|x|
|x+ 4|

>
|x|
δ
≥ 3

δ
>

3

3/N
= N.

(b) Directly from the definition, prove that limx→−2
x

(x+2)2 = −∞.

Solution: Let N > 0, and set δ ≤ 1, 1/
√
N . Then if 0 < |x+ 2| < δ, then

(x+ 2)2 < δ2 ≤ 1/N

1

(x+ 2)2
>

1

δ2
≥ N

x = (x+ 2)− 2 < δ − 2 ≤ 1− 2 = −1
x

(x+ 2)2
< −N (sign flips because −1 < 0).

Problem 5. Compute the following limits, showing each step and naming each limit law you use.

(a)

lim
x→4

√
x2 − x− 3 +

2

x
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Solution:

lim
x→4

√
x2 − x− 3 +

2

x
= lim

x→4

√
x2 − x− 3 + lim

x→4

2

x
Additivity

=
√

lim
x→4

x2 − x− 3 + lim
x→4

2

x
Exponents

=
√

lim
x→4

x2 − lim
x→4

x− lim
x→4

3 + lim
x→4

2

x
Additivity

=

√(
lim
x→4

x
)2
− lim

x→4
x− lim

x→4
3 + lim

x→4

2

x
Exponents

=

√(
lim
x→4

x
)2
− lim

x→4
x− lim

x→4
3 +

limx→4 2

limx→4 x
Quotients

=

√
(4)

2 − 4− lim
x→4

3 +
limx→4 2

4
Identity

=

√
(4)

2 − 4− 3 +
2

4
Constants

=
√

16− 4− 3 +
2

4
= 3 +

1

2
Arithmetic

(b)

lim
x→1

x2 + 4x− 5

x− 1

Solution:

lim
x→1

x2 + 4x− 5

x− 1
= lim

x→1

(x+ 5)(x− 1)

x− 1
Arithmetic

= lim
x→1

x+ 5 Almost Identical Functions

= lim
x→1

x+ lim
x→1

5 Additivity

= 1 + lim
x→1

5 Identity

= 1 + 5 Constants

= 6
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