Problem 1.

Compute the following limits if they exist. Show enough work to justify your computation, or your claim that the limit does not exist.
(a)

$$
\lim _{x \rightarrow-2} \frac{x^{2}+6 x+8}{2(x+4)(x+2)}=
$$

(b)

$$
\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9-x}
$$

(c)

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{3}+\sqrt[3]{x}}{\sqrt{9 x^{6}+2 x^{2}+1}+x}
$$

(d)

$$
\lim _{x \rightarrow 1^{+}} \frac{|x-1|}{x-1}=
$$

Problem 2.

Compute the following limits if they exist. Show enough work to justify your computation, or your claim that the limit does not exist.
(a)

$$
\lim _{x \rightarrow 1} \frac{\sin ^{2}(x-1)}{(x-1)^{2}}=
$$

(b)

$$
\lim _{x \rightarrow-2} \frac{x^{2}+6 x+9}{2(x+4)(x+2)}=
$$

(c)

$$
\lim _{x \rightarrow \pi} \frac{\sin (x)}{x}=
$$

(d)

$$
\lim _{x \rightarrow 3} \frac{x-5}{(x-3)^{2}}=
$$

Problem 3. (a) Using the Squeeze Theorem, show that

$$
\lim _{x \rightarrow 3} \frac{x-3}{1+\sin ^{2}\left(\frac{2 \pi+e+7}{x-3}\right)}=0
$$

(b) Let

$$
g(x)=\left\{\begin{array}{cl}
\frac{x^{2}-1}{x-1} & x>0 \\
x^{2}+1 & x<0
\end{array}\right.
$$

If possible, define an extension of g that is continuous at all real numbers.

Problem 4. (a) Show that the polynomial $x^{4}-6 x-2$ has two real roots, that is, there are two (different!) real numbers a and b such that $a^{4}-6 a-2=b^{4}-6 b-2=0$.
(b) Directly from the definition of derivative, compute $f^{\prime}(x)$ if $f(x)=\sqrt{x+3}$.

Problem 5. Compute the following derivatives using only the definition of derivative.
(a) Derivative of $f(x)=x^{2}+\sqrt{x}$ at $x=2$.
(b) Derivative of $g(x)=\frac{1}{x+1}$ at $x=1$.

