Problem 1.
Compute the following limits if they exist. Show enough work to justify your computation, or your claim
that the limit does not exist.
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Solution: We note that when x > 1, |z — 1| = z — 1, so we have
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Problem 2.

Compute the following limits if they exist. Show enough work to justify your computation, or your claim
that the limit does not exist.
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by the small angle approximation.
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Solution: We know that lim, , o2+ 62 +9 =1 and lim, , 52(z +4)(z +2) = 0. So
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Since 2(z + 4)(x + 2) can be either positive or negative near —2—it is negative for values just less than
—2 and positive for values just greater—we can’t do any better than this.
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since the top approaches —2 and the bottom approaches zero and is always positive.

Problem 3. (a) Using the Squeeze Theorem, show that

lim v-3 —0.

z—3 1+ SiIl2 (271';—6;7)

Solution: Observe that since —1 < sin(a) < 1 for any a, we have that 0 < sinz(a) < 1 for any a, and
thus1 <1+ sin2(a) < 2. Taking the reciprocal gives us 1/2 < m < 1 for any a, and in particular

for a = 2“;7763” Taking absolute values and multiplying by |z — 3| gives
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By continuity, we can compute that lim,_,3|(z — 3)/2 = lim,_,3 |z — 3| = 0. So by the squeeze theorem
we know that
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(b) Let
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If possible, define an extension of g that is continuous at all real numbers. Solution: ¢ fails to be
defined at 2 points: 0 and 1. We see that
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so we wish to set gp(1) = 2. (Alternatively, we can just replace the % with an = + 1).

At 0, we need to compute the two one-sided limits. We have
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Thus the discontinuity is removeable, and we want to set gr(0) = 1. Thus our continuous extension is
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Problem 4. (a) Show that the polynomial 2* — 62 — 2 has two real roots, that is, there are two (different!)
real numbers a and b such that a* — 6a — 2 = b* — 6b — 2 = 0.

Solution: Set f(r) = 2* — 62 — 2; since this is a polynomial function it must be continuous. We

compute:
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We have —2 < 0 < 5, so by the Intermediate Value Theorem there is some a between —1 and 0 with
f(a) = 0. Similarly, we have —7 < 0 < 2 so by the Intermediate Value theorem there is some b between
1 and 2 with f(b) = 0. Clearly a and b are different since a < 0 and b > 1, so a and b are two distinct
roots to the polynomial z* — 62 — 2.

(b) Directly from the definition of derivative, compute f'(z) if f(z) = vz + 3.
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Problem 5. Compute the following derivatives using only the definition of derivative.

(a) Derivative of f(x) = 22 + /z at = 2.
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(b) Derivative of g(z) = 1= at 2 =
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