Problem 1.

Compute the following limits if they exist. Show enough work to justify your computation, or your claim that the limit does not exist.
(a)

$$
\lim _{x \rightarrow-2} \frac{x^{2}+6 x+8}{2(x+4)(x+2)}=
$$

Solution:

$$
\lim _{x \rightarrow-2} \frac{x^{2}+6 x+8}{2(x+4)(x+2)}=\lim _{x \rightarrow-2} \frac{(x+4)(x+2)}{2(x+4)(x+2)}=\lim _{x \rightarrow-2} \frac{1}{2}=1 / 2
$$

(b)

$$
\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9-x}
$$

Solution:

$$
\lim _{x \rightarrow 9} \frac{3-\sqrt{x}}{9-x}=\lim _{x \rightarrow 9} \frac{(3-\sqrt{x})(3+\sqrt{x})}{(9-x)(3+\sqrt{x})}=\lim _{x \rightarrow 9} \frac{9-x}{(9-x)(3+\sqrt{x})}=\lim _{x \rightarrow 9} \frac{1}{3+\sqrt{x}}=1 / 6
$$

(c)

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{3}+\sqrt[3]{x}}{\sqrt{9 x^{6}+2 x^{2}+1}+x}
$$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{3 x^{3}+\sqrt[3]{x}}{\sqrt{9 x^{6}+2 x^{2}+1}+x} & =\lim _{x \rightarrow-\infty} \frac{3 x^{3} / x^{3}+\sqrt[3]{x} / x^{3}}{\sqrt{9 x^{6}+2 x^{2}+1} /\left(-\sqrt{x^{6}}\right)+x / x^{3}} \\
& =\lim _{x \rightarrow-\infty} \frac{3+x^{-8 / 3}}{-\sqrt{9+2 x^{-4}+x^{-6}}+x^{-2}} \\
& =\lim _{x \rightarrow-\infty} \frac{3}{-\sqrt{9}}=-1 .
\end{aligned}
$$

(d)

$$
\lim _{x \rightarrow 1^{+}} \frac{|x-1|}{x-1}=
$$

Solution: We note that when $x>1,|x-1|=x-1$, so we have

$$
\lim _{x \rightarrow 1^{+}} \frac{|x-1|}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{x-1}{x-1}=\lim _{x \rightarrow 1^{+}} 1=1
$$

Problem 2.

Compute the following limits if they exist. Show enough work to justify your computation, or your claim that the limit does not exist.
(a)

$$
\lim _{x \rightarrow 1} \frac{\sin ^{2}(x-1)}{(x-1)^{2}}=
$$

Solution:

$$
\lim _{x \rightarrow 1} \frac{\sin ^{2}(x-1)}{(x-1)^{2}}=\lim _{x \rightarrow 1}\left(\frac{\sin (x-1)}{x-1}\right)^{2}=\left(\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x-1}\right)^{2}=1^{2}=1
$$

by the small angle approximation.
(b)

$$
\lim _{x \rightarrow-2} \frac{x^{2}+6 x+9}{2(x+4)(x+2)}=
$$

Solution: We know that $\lim _{x \rightarrow-2} x^{2}+6 x+9=1$ and $\lim _{x \rightarrow-2} 2(x+4)(x+2)=0$. So

$$
\lim _{x \rightarrow-2} \frac{x^{2}+6 x+9}{2(x+4)(x+2)}= \pm \infty
$$

Since $2(x+4)(x+2)$ can be either positive or negative near - 2 -it is negative for values just less than -2 and positive for values just greater-we can't do any better than this.
(c)

$$
\lim _{x \rightarrow \pi} \frac{\sin (x)}{x}=
$$

Solution:

$$
\lim _{x \rightarrow \pi} \frac{\sin (x)}{x}=\frac{0}{\pi}=0
$$

(d)

$$
\lim _{x \rightarrow 3} \frac{x-5}{(x-3)^{2}}=
$$

Solution:

$$
\lim _{x \rightarrow 3} \frac{x-5}{(x-3)^{2}}=-\infty
$$

since the top approaches -2 and the bottom approaches zero and is always positive.
Problem 3. (a) Using the Squeeze Theorem, show that

$$
\lim _{x \rightarrow 3} \frac{x-3}{1+\sin ^{2}\left(\frac{2 \pi+e+7}{x-3}\right)}=0
$$

Solution: Observe that since $-1 \leq \sin (a) \leq 1$ for any a, we have that $0 \leq \sin ^{2}(a) \leq 1$ for any a, and thus $1 \leq 1+\sin ^{2}(a) \leq 2$. Taking the reciprocal gives us $1 / 2 \leq \frac{1}{1+\sin ^{2}(a)} \leq 1$ for any a, and in particular for $a=\frac{2 \pi+e+7}{x-3}$. Taking absolute values and multiplying by $|x-3|$ gives

$$
\left|\frac{x-3}{2}\right| \leq\left|\frac{x-3}{1+\sin ^{2}\left(\frac{2 \pi+e+7}{x-3}\right)}\right| \leq|x-3|
$$

By continuity, we can compute that $\lim _{x \rightarrow 3}\left|(x-3) / 2=\lim _{x \rightarrow 3}\right| x-3 \mid=0$. So by the squeeze theorem we know that

$$
\lim _{x \rightarrow 3}\left|\frac{x-3}{1+\sin ^{2}\left(\frac{2 \pi+e+7}{x-3}\right)}\right|=0
$$

and thus

$$
\lim _{x \rightarrow 3} \frac{x-3}{1+\sin ^{2}\left(\frac{2 \pi+e+7}{x-3}\right)}=0
$$

(b) Let

$$
g(x)=\left\{\begin{array}{cl}
\frac{x^{2}-1}{x-1} & x>0 \\
x^{2}+1 & x<0
\end{array}\right.
$$

If possible, define an extension of g that is continuous at all real numbers. Solution: g fails to be defined at 2 points: 0 and 1 . We see that

$$
\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} x+1=2
$$

so we wish to set $g_{F}(1)=2$. (Alternatively, we can just replace the $\frac{x^{2}-1}{x-1}$ with an $x+1$).
At 0 , we need to compute the two one-sided limits. We have

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} g(x) & =\lim _{x \rightarrow 0^{-}} x^{2}+1=1 \\
\lim _{x \rightarrow 0^{+}} g(x) & =\lim _{x \rightarrow 0^{+}} \frac{x^{2}-1}{x-1}=\frac{-1}{-1}=1
\end{aligned}
$$

Thus the discontinuity is removeable, and we want to set $g_{F}(0)=1$. Thus our continuous extension is

$$
g_{F}(x)=\left\{\begin{array}{cc}
x+1 & x>0 \\
1 & x=0 \\
x^{2}+1 & x<0
\end{array}=\left\{\begin{array}{cc}
x+1 & x \geq 0 \\
x^{2}+1 & x \leq 0
\end{array}\right.\right.
$$

Problem 4. (a) Show that the polynomial $x^{4}-6 x-2$ has two real roots, that is, there are two (different!) real numbers a and b such that $a^{4}-6 a-2=b^{4}-6 b-2=0$.
Solution: Set $f(x)=x^{4}-6 x-2$; since this is a polynomial function it must be continuous. We compute:

$$
\begin{array}{rr}
f(0)=-2 & f(-1)=5 \\
f(1)=-7 & f(2)=2
\end{array}
$$

We have $-2<0<5$, so by the Intermediate Value Theorem there is some a between -1 and 0 with $f(a)=0$. Similarly, we have $-7<0<2$ so by the Intermediate Value theorem there is some between 1 and 2 with $f(b)=0$. Clearly a and b are different since $a<0$ and $b>1$, so a and b are two distinct roots to the polynomial $x^{4}-6 x-2$.
(b) Directly from the definition of derivative, compute $f^{\prime}(x)$ if $f(x)=\sqrt{x+3}$.

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+3}-\sqrt{x+3}}{h} \\
=\lim _{h \rightarrow 0} \frac{x+h+3-(x+3)}{h(\sqrt{x+h+3}+\sqrt{x+3})} & \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h+3}+\sqrt{x+3})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+3}+\sqrt{x+3}}=\frac{1}{2 \sqrt{x+3}} .
\end{aligned}
$$

Problem 5. Compute the following derivatives using only the definition of derivative.
(a) Derivative of $f(x)=x^{2}+\sqrt{x}$ at $x=2$.

Solution:

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(2+h)^{2}+\sqrt{2+h}-2^{2}-\sqrt{2}}{h} \\
& =\left(\lim _{h \rightarrow 0} \frac{4 h+h^{2}}{h}\right)+\left(\lim _{h \rightarrow 0} \frac{(\sqrt{2+h}-\sqrt{2})(\sqrt{2+h}+\sqrt{2})}{h(\sqrt{2+h}+\sqrt{2})}\right) \\
& =\left(\lim _{h \rightarrow 0} 4+h\right)+\left(\lim _{h \rightarrow 0} \frac{1}{\sqrt{2+h}+\sqrt{2}}\right) \\
& =4+\frac{1}{2 \sqrt{2}} .
\end{aligned}
$$

(b) Derivative of $g(x)=\frac{1}{x+1}$ at $x=1$.

Solution:

$$
\begin{aligned}
g^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{g(1+h)-g(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{2+h}-\frac{1}{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2}{4+2 h}-\frac{2+h}{4+2 h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(4+2 h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{4+2 h} \\
& =\frac{-1}{4} .
\end{aligned}
$$

