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1 Multivariable Functions

1.1 Functions, twospace, and threespace

Recall that a function is a rule that takes an input and assigns a specific output. Note that

a function always gives exactly one output, and always gives the same output for a given

input.

Importantly, we haven’t specified what types of outputs functions have—in the abstract,

a function can take any type of input and give any type of output. We say that the set of

possible inputs for a function is the domain.

In your previous calculus courses you have seen “single–variable” functions, which take in

a single real number and output a single real number. In this course we will study functions

of “multiple variables”. That is, either their input, or their output, or both will consist of

more than one real number.

Example 1.1. • Altitude as a function of latitude and longitude

• Gas pressure as a function of volume and temperature

• Temperature as a function of latitude and longitude and altitude

• Volume of a box as a function of length and width and height

• Position as a functionof time

• Direction and distance to your destination as a function of where you are

Definition 1.2. We use R to denote the set of all real numbers.

We use R2 = {(x, y) : x, y ∈ R} to denote the set of ordered pairs of real numbers. This

is sometimes called the real plane or the cartesian plane.

We use R3 = {(x, y, z) : x, y, z ∈ R} to denote the set of ordered triples of real numbers.

This is sometimes called real threespace.

Remark 1.3. We can use Rn to refer to the set of ordered sets of n real numbers. This is

an n-dimensional space. Everything we do in this course can be generalized to work in Rn

rather than R2 or R3, but in this course we’re going to confine ourselves to the two- and

three-dimensional cases.

This is mainly because those cases are easier to draw. But it’s also harder to talk about

the higher-dimensional cases without linear algebra.
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Geometrically, we think of R2 as representing a plane; the first real number gives the

x-coordinate, or horizontal distance from the origin; the second gives the y-coordinate or

vertical distance.

Similarly, R3 represents three-dimensional space, with the three numbers giving the dis-

tances along three perpendicular axes. We put these axes together according to the right-

hand rule, which says that if we look from the positive side of the z-axis we see the xy-plane

in the usual orientation.

Example 1.4.

We can compute the distance between two points using the pythagorean theorem. If (x, y)

and (a, b) are two points in R2, then the distance between them is given by
√

(x− a)2 + (y − b)2.
Similarly, if (x, y, z) and (a, b, c) are two points in R3, then the distance between them is

given by
√

(x− a)2 + (y − b)2 + (z − c)2.

Example 1.5. The distance between (3, 5) and (1, 7) is√
(3− 1)2 + (5− 72) =

√
4 + 4 = 2

√
2.

The distance betweent (1,−1, 0) and (3, 2, 1) is√
(1− 3)2 + (−1− 2)2 + (0− 1)2 =

√
4 + 9 + 1 =

√
14.

Example 1.6. Suppose we want to describe a sphere in threespace. The unit sphere is the

set of all points of distance one from the origin. That is, it’s the set of all points (x, y, z)

such that
√

(x− 0)2 + (y − 0)2 + (z − 0)2 = 1. We can simplify this equation and see that

the unit sphere is precisely the set of points that satisfy the equation x2 + y2 + z2 = 1.

More generally, if we have a sphere of radius r centered at the point (a, b, c), then it

is the set of all points of distance r from (a, b, c). So it’s the set of all points such that√
(x− a)2 + (y − b)2 + (z − c)2 = r, or in other words (x− a)2 + (y − b)2 + (z − c)2 = r2.

In this course we’ll think about four or five basic categories of functions. This taxonomy

is a bit artificial but it will still be useful to think about:
Type of function Name Example of use

R→ R Single-variable functions

R2 or R3 → R Multivariable function Temperature as a function of position

R→ R2 or R3 Parametrization of a path Position as a function of time

R2 → R3 Parametrized surface

R2 → R2 or R3 → R3 Vector field Direction of a force as a function of position
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You are already familiar with single-variable functions from your previous calculus courses.

For the first part of this course we’re going to focus on multivariable functions, that take in

multiple variables but output a single variable. In the second half of the course we will look

at functions that output more than one variable as well.

1.2 Graphing multivariable functions

To describe and understand single-variable functions, we would draw a graph, with one

dimension representing the input and one dimension representing the output. We would like

to do the same thing for multivariable functions, but the situation is a bit more difficult

because it’s much harder to draw three-dimensional pictures. (And all but impossible to

draw four- or six-dimensional pictures).

1.2.1 Graphing functions of two variables as surfaces

Recall that when we graphed a single-variable function f , we took all the points (x, y) such

that y = f(x). Similarly, we can define:

Definition 1.7. Let f : R2 → R be a function of two variables. Then the graph of f is the

set {(x, y, z) : z = f(x, y)} of all points with z = f(x, y).

The graph of a two-variable function will generally look like a curved two-dimensional

surface in three-dimensional space.

A graph of a two-variable function will still have to pass the vertical line test: a vertical

line given by x = a, y = b will intersect the surface in at most one point. This is because a

given (x, y) input has only one output.

Figure 1.1: Graphs of the functions x2 + y2, x+ y, and
√

9− x2 − y2
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1.2.2 Transformations of two-variable functions

If you already know the graph of one function, you can often figure out what the graphs of

related functions must look like.

• The graph of f(x, y) + c is the graph of f(x, y) shifted up (along the z-axis) by c units.

• The graph of f(x − a, y − b) is the same as the graph of f(x, y) but shifted a units

along the x axis and b units along the y axis. You can think of this as moving the

center of the graph from (0, 0) to (a, b).

• The graph of f(−x, y) is the graph of f(x, y) reflected across the yz plane, inverting

the x axis.

• The graph of f(x,−y) is the graph of f(x, y) reflected across the xz plane, inverting

the y axis.

• The graph of −f(x, y) is the graph of f(x, y) reflected across the xy plane, inverting

the z axis and drawing the graph “upside down”.

Example 1.8. Let’s consider the function f(x, y) = x2 + y2 that we saw in figure 1.1. Then

we can look at the following ways of shifting the function in figure 1.2:

Figure 1.2: The graphs of f(x, y) + 5, f(x− 1, y), and f(x, y + 2)

Similarly, we can take the function g(x, y) = x + 5y and look at the following graphs in

figure 1.3:

1.2.3 Graphing two-variable functions with cross-sections

We still don’t have a good way to figure out what the graph of a two-variable function looks

like if we don’t already know. But the last section gives us an idea: look at each variable

individually.
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Figure 1.3: The graphs of g(x, y), g(−x, y), g(x,−y), and −g(x, y)

Definition 1.9. If f(x, y) is a function of two variables, then we can get a function of

one-variable by fixing x = c and considering the function f(c, y). This function is called

a cross-section of f with x fixed. The graph of this cross-section is the curve given by

intersecting the plane x = c with the graph of f(x, y).

Similarly, the function of one variable given by f(x, c) is a cross-section of f with y fixed.

The graph of this function is the curve given by intersecting the plane y = c with the graph

of f(x, y).

Each cross-section is a single-variable function, and thus straightforward to graph. By

graphing a number of cross sections we can get a good idea what the graph of the whole

function looks like.

Example 1.10. Let f(x, y) = x2 − y2. First we’ll take cross-sections holding y constant.

We can plot these below in figure 1.4:

Thus we see that the cross-sections holding y constant are parabolas, which start lower

and lower the further away we get from the y = 0 plane.

We can also take cross-sections holding x constant. We get the similar graphs in figure

1.5:
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Figure 1.4: Cross sections of x2 − y2 holding y constant

Figure 1.5: Cross sections of x2 − y2 holding x constant

These show us that holding x constant, we get upside-down parabolas, with the peak

being higher and higher the farther we are from the plane x = 0.

Putting this together, we can assemble a picture of the real function:

Figure 1.6: The graph of x2 − y2

Example 1.11. Let g(x, y) = x3 + sin(y). We can again take cross sections, holding x and

y constant in turn:

From the left, we see that holding x constant, we have a gentle sine wave along the y

axis. From the right, we see that holding y constant, x is increasing in a cubic. Putting this

information together, we can get a graph for the whole surface:
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Figure 1.7: Cross sections of x3 + sin(y), holding x constant on the left and y constant on

the right

Figure 1.8: The graph of x3 + sin(y)

1.2.4 Graphing two-variable functions with level sets

Sometimes we want to approach the same question from a different direction (literally!).

Instead of holding x constant or y constant, we will hold z constant.

Definition 1.12. If f(x, y) is a function of two variables, then the level set of f at level c

is the set of all points (x, y) such that f(x, y) = c.

A contour diagram for f is a graph with several level sets for f at different levels.

Importantly, the level set is not a function, and doesn’t need to pass any vertical line

tests or anything similar.

Contour diagrams show up commonly in topographical maps.

Example 1.13. The contour plots in figure 1.9 look very similar, but the contour heights

make them very different. We can see the corresponding graphs in figure 1.10.
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Figure 1.9: Contour diagrams for f(x, y) = 25− x2 − y2 and g(x, y) =
√
x2 + y2

Figure 1.10: The graphs of f(x, y) = 25− x2 − y2 and g(x, y) =
√
x2 + y2

Example 1.14. We can also draw contour plots for some of our earlier functions. The

contour plot for the saddle from example 1.10 and the sine function from example 1.11

appear in figure 1.11.

Figure 1.11: Contour plots for x2 − y2 and x3 + sin(y)

1.2.5 Graphing three-variable functions with level surfaces

We’ve now established a few approaches to graphically representing functions of two vari-

ables. What can we do with functions of three variables?
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Simply graphing the entire function isn’t really a plausible solution. As a mathematical

object, the graph of a three-variable function as a subset of R4 is perfectly well defined;

but it’s almost impossible to draw or visualize these graphs, so they don’t help us with our

problem of visually representing three-variable functions.

In contrast, cross-sections and level sets are both useful tools. They are much tricker

to implement here, because the cross-sections and level sets will themselves be two-variable

functions, and thus give us two-dimensional surfaces inside threespace.

Definition 1.15. If f(x, y, z) is a function of two variables, then the level set of f at level

c is the set of all points (x, y, z) such that f(x, y, z) = c.

It’s much harder to draw a contour diagram in this case, but we can sort of make an

attempt still.

Example 1.16. Find the level surfaces of f(x, y, z) = x2 + y2 + z2.

There are no surfaces for c < 0, and for c = 0 the level surface is a point. For larger c we

get a sphere of radius
√
c. Thus the level sets for c = 1, 4, 9 are shown in figure 1.12.

Figure 1.12: Level sets for x2 + y2 = z2 at the levels c = 1, 4, 9

Example 1.17. We can see the level surfaces of g(x, y, z) = x2 + y2 and h(x, y, z) = x+ z,

at the levels 1, 2, 3, 4, in figure 1.13. Thbe level surfaces for g are cylinders of radius
√
c, and

the level surfaces of h are all parallel planes.

Example 1.18. We’d like to understand the level surfaces of f(x, y, z) = x2+y2−z2. These

will look different depending on the level of c.
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Figure 1.13: The level surfaces of g and h at the levels 1, 2, 3, 4

It’s probably easiest to think about these level surfaces by thinking about their own

contour plots as z varies. If c = 0, then our equation is x2 + y2 = z2. We see that for each z

we get a circle of radius z in the plane perpendicular to the z-axis, and in fact at z = 0 we

have a single point. Stacking these all together gives us two cones.

If c is positive, then we have the equation x2 + y2 = z2 + c. Then we see that for each z

we get a circle of radius
√
z2 + c > z, and the radius will always be positive. If instead we

take, say, the x = 0 cross-section, we get y2 − z2 = c, which is a hyperbola. The resulting

surface is a hyperboloid of one sheet.

Finally, if c is negative, we get x2+y2 = z2+c, where there is no solution when z2+c < 0.

Thus we’ll have a stack of increasing radius circles, but it will start at z = ±
√
c. This surface

is a hyperboloid of two sheets.

Figure 1.14: Level surfaces of x2 + y2 − z2 at the levels 0, 2,−2
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You can see some helpful and common surfaces on page 702 of the textbook, at the end

of section 12.5.

Remark 1.19. We’ve used surfaces to represent the full graph of two-variable functions, and

also to represent the level surfaces of three-variable functions. These surfaces are at least

somewhat related, and in fact if we have the graph of a function f(x, y), then it is also the

level surface at zero of the function f(x, y)− z.

Thus every graph of a two-variable function is also a level surface of some three-variable

function. The converse, however, is not true; many of the level surfaces we have seen cannot

be the graphs of two-variable functions, since they fail the vertical line test.

1.3 Linear Functions

In single-variable calculus, we used the derivative to approximate functions with their tangent

lines. We want to do the same sort of approximation for functions of multiple variables; first

we need to understand the analogue of a line. We focus on the two-variable case, but our

ideas here have obvious generalizations.

Definition 1.20. A plane is defined by the equation z = z0 +m(x− x0) + n(y − y0). This

plane passes through the point (x0, y0, z0), and we say it has slope m in the x-direction and

slope n in the y-direction.

Equivalently, a plane is given by the equation z = c+mx+ny (where c = z0−mx0−ny0.
The plane is the graph of the linear function f(x, y) = z0 +m(x− x0) + n(y − y0).

Remark 1.21. If you have taken linear algebra, you will notice that this is somewhat dif-

ferent from the definition of a linear function given there. A linear function in the linear

algebra sense must also pass through the origin, and thus the equation can always be written

f(x, y) = mx+ ny.

Thus technically we have defined an “affine transformation” rather than a linear trans-

formation. But under the same technicality, most lines in single-variable calculus are not

linear functions. We’ll mostly ignore that here.

Just as a line in the plane is determined by two points, a plane in threespace is determined

by three points. The first point gives us (x0, y0, z0), and the other two points tell us the slopes

m and n.

Example 1.22. Find the equation of hte plane passing through the points (1, 0, 1), (1,−1, 3), (3, 0,−1).
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The first two points have the same x-coordinate, so we can use them to find the y slope.

We see that n = 3−1
−1−0 = −2. Then we have

f(x, y) = 1 +m(x− 1)− 2(y − 0)

−1 = 1 +m(3− 1)− 2(0− 0) = 2m+ 1

so m = −1 and the equation for the plane is

f(x, y) = 1− (x− 1)− 2y = 2− x− 2y.

We can check our work by plugging all three points back into this equation and confirming

that they work.

Example 1.23. Find an equation for the plane going through (−1, 2, 3), (1, 5, 2), and

(3, 4, 1).

This time we don’t have any conveniently unchanged coordinates. So instead we write

f(x, y) = 3 +m(x+ 1) + n(y − 2)

2 = 3 +m(1 + 1) + n(5− 2) = 3 + 2m+ 3n

1 = 3 +m(3 + 1) + n(4− 2) = 3 + 4m+ 2n

2m+ 3n = −1

4m+ 2n = −2

−4n = 0

n = 0

m = −1/2

f(x, y) = 3− 1

2
(x+ 1).

The important thing about linear functions is that changes in x and changes in y change

the output completely independently. This makes everything about the functions very sim-

ple.

Example 1.24.
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Figure 1.15: Contour diagrams for f(x, y) = 2− x− 2y and g(x, y) = 3− (x+ 1)/2

1.4 Limits and Continuity

In calculus 1, we learned about limits, which tell us in some sense the value a function

“should” have at a point—which may or may not be the value it does have, and it may not

have a value at all. We can extend the same idea to multivariable functions.

Definition 1.25. If f : R2 → R is a function, then it has a limit at the point (a, b) of L,

and we write

lim
(x,y)→(a,b)

f(x, y) = L,

if we can make f(x, y) as close as we want to L, purely by requiring the distance from (x, y)

to (a, b) to be small enough (but not zero).

Remark 1.26. Formally we’d write something like: for every ε > 0, there is a δ > 0 such that

if
√

(x− a)2 + (y − b)2 < δ then |f(x, y)−L| < ε. We won’t be drilling down into that level

of rigor in this class, though. If you want to see more of this kind of thing, take Math 310.

Example 1.27. When the function doesn’t do anything weird, limits won’t do anything

surprising.

lim(x,y)→(3,4) x
2 + y2 = 32 + 42 = 25

lim(x,y)→(1,−1) x
2 − y2 = 12 − (−1)2 = 0

Definition 1.28. A function f is continuous at a point (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b).
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A function is continuous on a region R if it is continuous at each point in R.

If f is not continuous at a point (a, b) then it is discontinuous there.

Fact 1.29. A function defined entirely from algebraic, trigonometric, and exponential func-

tions is continuous anywhere it is defined.

(No function is ever continuous anywhere it is not defined).

Example 1.30. Let f(x, y) = x2y
x2+y2

. This function is continuous everywhere it is defined,

which is everywhere except (0, 0). So it’s easy to compute, for instance, that lim(x,y)→(1,1) f(x, y) =
12·1

12+12
= 1

2
.

Now let’s consider lim(x,y)→(0,0) f(x, y). We can’t just plug (0, 0) in here, so we need to

do something else.

First, we can look at the graph and contour diagram of f .

Figure 1.16: The graph and contour plot for f(x, y) = x2y
x2+y2

We see that the function seems to smoothly approach 0 as (x, y) approaches (0, 0), so we

suspect the limit is in fact 0.

Informally, we see that the denominator “goes to zero” “twice”, while the numerator goes

to zero “three times”. Thus we would expect the limit to be zero.

If we want to be more rigorous, we calculate the distance between f(x, y) and the guessed

limit 0. Then we have

|f(x, y)− L| =
∣∣∣∣ x2y

x2 + y2
− 0

∣∣∣∣ =

∣∣∣∣ x2

x2 + y2

∣∣∣∣ |y| ≤ |y| ≤√x2 + y2.

Thus the distance between f(x, y) and 0 is less than the distance between (x, y) and (0, 0).

Clearly by making (x, y) closer to (0, 0) we can make f(x, y) as close as we want to 0.
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Since the limit exists, we can extend this function to be continuous at the origin: the

function

ff (x, y) =

{
x2y

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

is continuous at (0, 0).

Example 1.31. Now let’s consider the similar function g(x, y) = x2

x2+y2
. Like in example

1.30, this is continuous everywhere it is defined, which is everywhere except at (0, 0).

But at (0, 0) things are tricker. The graph has a noticeable spike, and the contour plot

looks terrible near (0, 0), with all the contours converging onto that single point.

Figure 1.17: The graph and contour plot for g(x, y) = x2

x2+y2

The informal algebraic argument we gave before doesn’t help: both the top and the

bottom go to zero “twice”. So this doesn’t help us find any limit.

Formally, we want to show that no limit exists, so we want to show that you can be as

close to (0, 0) as you want and still get very different answers for g(x, y).

So first let’s consider points that look like (a, 0). Then g(a, 0) = a2

a2+02
= 1. Since a can

be as small as we want, this tells us that we can be as close to the origin as we want and

have g(x, y) = 1.

But this doesn’t mean the limit is 1! As an example, take points that look like (0, b).

Then g(0, b) = 02

02+b2
= 0. Since b can be anything, this also tells us that we can be as close

to the origin as we want, and have g(x, y) = 0. Thus no limit exists.

In fact, by approaching from the right direction, we can get any value between 0 and 1.

And we can see this behavior both in the graph (which has an abrupt spike or dip near the

origin), and in the contour plot (which shows us different directions of approach, and the

values they will give).
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We just saw that we can show that limits don’t exist by approaching the same point from

different directions. This should remind you of the one-variable case, where we might check

the right- and left-sided limits and show they differ.

But the multivariable case is considerably more complex, because there are infinitely

many directions. (In fact it’s more complicated than that: there are functions that have a

consistent limit as long as you approach along any straight-line path, but that break down

when you approach along the right curve).

But if we want to understand this better, we’ll need a language for talking about direc-

tions.
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