Jay Daigle Occidental College Math 212: Multivariable Calculus

4 Optimization

There are two major applications of derivatives. The first, which we explored in sections
and is to approximate functions that are hard or annoying to compute. The other is to
attempt to find optimal values of functions.

The case is basically similar to the single-variable case, but as usual some extra wrinkles

are introduced by having more than one input variable.

4.1 Critical points and Local Extrema

Definition 4.1. We say f has a local mazimum at the point Py if F'(FPy) > f(P) for all P
near Fp.

We say f has a local minimum at the point Py if F(FPy) < f(P) for all P near F.

Remark 4.2. Note that we say f “has” an extremum at P. The extreme value is the actual
output of f at that point. Thus, we can’t say that P “is” a maximum of f.

It’s possible to be very precise about what the word “near” means, but in this case we
won’t really bother. A point is a local maximum if you can draw a small circle around it

and it gives the largest value of any point in that circle.

Example 4.3. Let f(x,y) = 1. Does this have any global maxima or minima?

Yes. There is a maximum and a minimum at every single point.

This example is actually less silly in the multivariable case than in the single-variable

case.

Example 4.4. Let f(x,y) = 2% Does this have any global maxima or minima?
Yes. When 2 = 0 we have a local minimum whose value is zero. Thus there is a minimum

at every point on this line.
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With a picture (in 2 or 3 dimensions), we can identify the local extrema. And with a
sufficiently simple algebraic expression we can figure out what they are. But what can we

do when the situation is more complex? We need to use the derivatives.

Theorem 4.5 (Fermat). If f has a local extremum at P, and V f(P) exists, and P is not
on the boundary of the domain of f, then V f(P) = 0.

Proof. Suppose Vf(P) = @ # 0. Then fz(P) > 0, so f(P + h#) > f(P) and so f doesn’t
have a local maximum at P. Similarly, f(P —hv) < f(P) so f doesn’t have a local minimum
at P. ]

Definition 4.6. If Vf(P) = 0 or V[ is undefined at P, we say that P is a critical point of
f.

Thus Fermat’s theorem tells us that all (interior) local extrema for f occur at critical

points.

Example 4.7. Let f(x,y) = —\/2? + y%. Then

. —T - —Y -
Vf(xay)—\/x2+y22+\/x2+y2j

This is actually never equal to zero, since it’s undefined at the point (0,0). But this still

makes the origin into a critical point, and indeed we can see that f has a local maximum at

the origin.

Example 4.8. Let f(z,y) = 2> —2x +y* — 4y +5
We compute

-

Vi(z,y) =2z —2)i+ (2y — 4);

which is 0 precisely when (z,y) = (1,2). Thus this is the only critical point.
A little algebra tells us that this graph is a paraboloid (x — 1) + (y — 2)%. So there is a

minimum at (1, 2) with value 0.
Example 4.9. Let f(x,y) = 2* — y*. Then
Vf(z,y) =2z — 2yj

is zero when « = y = 0. Thus there is a single critical point at (0, 0).
However, from the graph we can see that this is neither a maximum nor a minimum. In
fact, it’s a minimum in the z direction, and a maximum in the y direction. We call points

like this “saddle points”.
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Example 4.10. Let f(z,y) = 8y® + 122* — 24xy. We compute

—

Vf(z,y) = (24x — 24y)i + (243% — 24x)].

This is zero when 24z = 24y and 24y? = 24z, which implies that z = y and x = y?, which
gives us either z =y =0 or z = y = 1. So there are two critical points, at (0,0) and (1,1).
From looking at the graph, we can see that there is a saddle point at (0, 0) and a minimum

at (1,1).

1 —12x%-24xy+8y°=-3
12x° 24 xy+8y° =_2
1 —12x2-24xy+8y =21
— 12x2-24xy+8y° =0
1 1257 -24xy+8y° =1
— 12x% 24 xy+By =2

This last problem especially is hard to see what’s happening without looking at a graph.

But the second derivative can tell us what type of extrema we have at critical points.
Proposition 4.11. Suppose V f(a,b) = 0. Define
D = Fra(@,6) fyy(.) = (fuyla, )
Then:
e If D >0 and f.r(a,b) >0, f has a local minimum at (a,b).
e If D >0 and f.(a,b) <0, f has a local mazimum at (a,b).
o If D <0 f has a saddle point at (a,b).
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Importantly, if D = 0 then this proposition doesn’t tell us anything and we would need
to do something else. We could have a local maximum, a local minimum, a saddle point, or

something genuinely weird.

Example 4.12. If f(x,y) = 2* + 3, then we have

fo(,y) = 4a® fy(z,y) = 4°
fm(w,y) = 1222 fyy(xay) = 123/2
fay(,y) =0 D = 1442°y°.

We see that we have a critical point at (0,0), but at that point we get D = 0, which is
unhelpful. But this is clearly a local minimum, since f(0,0) =0 and f(x,y) > 0.
If f(z,y) = —x* — y*, then we have

fo(z,y) = —4a® fo(z,y) = —4y°
foo(z,y) = —1227 foy(z,y) = =129
foy(z,y) =0 D = 144z%y>.

We see that we have a critical point at (0,0), but at that point we get D = 0, which is
unhelpful. But this is clearly a local maximum, since f(0,0) =0 and f(z,y) <0.
If f(z,y) = 2* — y*, then we have

fo(,y) = 4a® fy(z,y) = —4y°
foo(z,y) = 1227 fyy(z,y) = =129
fey(z,y) =0 D = —144x*y>.

We see that we have a critical point at (0,0), but at that point we get D = 0, which is again
unhelpful. In this case we have a saddle point: we can see that it is a minimum holding y

constant, and a maximum holding x constant.

Example 4.13. Let f(z,y) = 2%/2 + 33> + 9y* — 3zy + 9y — 9.

We compute

—

V(z,y) = (z — 3y — 9)i + (9* + 18y + 9 — 3z);
and thus there are critical points when z = 3y +9 and 9y + 18y + 9 = 3z. Solving this gives
9y* + 18y + 9 = 9y + 27
9y* +9y — 18 =0
Wy +2)(y—1)=0
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And thus y = —2 or y = 1. We see that if y = —2 then z = 3, and if y = 1 then x = 12, so
the critical points are (3, —2) and (12,1).

For the second derivative test, we have

foz(,y) =1
fyy = 18y + 18
fxy(x,y) =-3

D= (18y+18) — (=3)* =18y + 9
D(3,-2) = —27<0
D(12,1) =27

so there is a saddle point at (3, —2) and a minimum at (12, 1).

1 — axy+ = _9x+31°+9)2+9y=-50

Bxy+E _9x+3)°+9y 49y =-40
Bxy+E _9x+3)°+9y%+9y=-30
Bxy+E _9x+3)°+9y%+9y=-20

Bxy+E _9x+3)°+9y%+9y=-10

R Nl N L P M L M

Bxy+ S —9x+3y°+9y7 49y =0

4.2 Global Extrema and the Extreme Value Theorem

Critical points and the second derivative test let us determine which points are local extrema,
but we often also want to know what the largest possible value we can get out of a function
is.

Definition 4.14. We say f has a global mazimum on R at the point Py if F'(Fy) > f(P)

for all P in R.
We say f has a global minimum on R at the point Py if F(Fy) < f(P) for all P in R.

Example 4.15. Suppose we are running a factory that produces two different products.
The price we can sell each product for depends on the quantity we produce, according to
the equations

p1 = 600 — .3¢; p2 = 500 — .2¢s. (1)
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Our total cost of production is given by

We want to know how many of each item to produce to maximize our total profit.

Notice that here we don’t really care about the relative extrema; we just want to find
the best possible outcome.

First, we need to write our profit as a function of how much of each item we produce.

We observe that our revenue is given by
R(q1,¢2) = pra1 + pagz = 600g; — .3¢7 + 500g2 — 243
Profit is revenue minus costs, or
P(q1,q2) = R— C = —16 + 598.8¢; — .3¢° + 498.5¢2 — .2¢5 — .2q1¢o.

Now we have P written as a function of two variables. We want to optimize it on the region
{(q1,42) : ¢1 > 0,q2 > 0} since we can’t produce negative quantities.

How do we find the largest possible value? In this case, the “physics” (or economics) of
the situation tell us that it should occur at a relative maximum, since producing nothing is
obviously suboptimal, and we expect our costs to explode as our quantity produced tends
to infinity.

(Alternatively, we can notice that our equation is some sort of paraboloid and thus has
a unique relative maximum that is also the absolute maximum).

Thus we look for critical points, and compute the partial derivatives.

oprP
oq
oP
Iqa

and setting these equations equal to zero and solving gives us a critical point at (q1,q2) =
(699.1,896.7). Plugging back in to equation gives us prices of (p1,p2) = (390.27,320.66)
and we get a total profit of $432,797 dollars.

We'd like to make sure this is in fact a maximum. We can check the second partials, and

we get:
PP PP PP
Iq? Iq10qs g3
and thus D = (—.6)(—.4) — (—.2)> = .24 — .04 = .2. Then D > 0 but ‘?;T]; < 0 and thus we
1

have a local maximum. In fact, since the second derivatives are constant, we see again that

-4
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we have a paraboloid; we can also infer from this that the function never increases again, so

this is the only local maximum and must be a global maximum.

Example 4.16. Suppose a trucker wants to bring 480 cubic meters of gravel to a dump and
needs to build a box for transport. Dumping costs $80 per trip, plus the cost of the box.
The box has height 2m, and costs $100 per square meter for the ends, $50 per square
meter for the sides, $200 per square meter for the bottom. What is the optimum box size?
Let’s say the box has sides of length x and ends of length y. Then the trucker takes
480/(2xy) trips at $80/trip, for a total cost of (240 - 80)/(xy). The total cost of the box is
400y for the ends, 200x for the sides, and 200xy for the bottom. So total cost is

C' = 400y + 200x + 200zy + (240 - 80)/(zy) = 200 (96/(zy) + 2y + x + xy) .

We want to optimize this on the region {(x,y) : > 0,y > 0} since we need a positive-size
box.

We can ignore the factor of 200, which doesn’t change optimum. Gradient gives
Cp =14y —96/(2%y) C,=2+z—96/(zy?)

Setting equal to zero and solving gives

96 = zy + z%y* 96 = 2zy* + 2%°
2’y = 2zy?
T =2y
96 = 49® + 49/

and the only positive real solution is y = 2. Thus the only critical point in the region is
(4,2).The total cost of the transport is $5600.
We use the second derivative test to make sure this is a minimum. (It certainly ought to

be, physically). We see that

Chz = 192/ (2%y) Cry = 1+96/(2*y?) Cyy = 192/(zy?)
=6 —=5/2 = 3/2

and thus
D=9-25/4=11/4> 0.

Thus D > 0 and C,, > 0, so this is a local minimum.
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In both of these problems, we relied on physical intuition to tell us that a global maximum
or minimum should exist. If we don’t have such a clear physical setup, how can we tell?

Let’s turn the question around and ask how we can avoid having a global maximum.
One way is for the function to keep increasing infinitely the further we go in some direction.
For instance, the function f(z,y) = x + y doesn’t have a global maximum on the plane.

Obviously this is only possible if the region is infinite. We say a region is bounded if it
doesn’t extend infinitely in any direction—that is, if we can draw a circle of finite radius
around the whole region.

A more subtle way to avoid a maximum is to approach a maximum, and simply not have
the point that would give you the maximum. An example here is the function f(z,y) = 2?+y?
on the region 22+ 3? < 1. You can get any value less than 1, but you cannot get 1-—so there
is no largest possible value.

This is only possible if the region approaches but doesn’t reach some point. We say a
region is closed if it contains its entire boundary, and thus there are no points approached
by the region but not contained in the region.

If a function is continuous, it turns out that these are the only way to avoid having a

maximum.

Theorem 4.17 (Extreme Value). If f is a continuous function on a closed and bounded

region R, then f has a global maximum and a global minimum on R.

Thus if we have a closed and bounded region, and a continuous function, we know it
must have a global maximum and a minimum.

In single variable calculus, finding these was easy. We found all the critical points and all
the endpoints, plugged them into the function, and then the largest was the global maximum.
In the multivariable case things are a bit harder. We still know that the global maximum
must appear either at a critical point or a boundary point, but there are infinitely many
boundary points so we can’t just plug all of them in. Instead we need a technique to find

extreme values on the boundary.

4.3 Constrained Optimization and Lagrange Multipliers

In order to answer this problem, we need to develop techniques for constrained optimization:
optimization subject to some constraint equation. This will let us find the optimum value

of a function on the boundary of its domain; it will also allow us to solve natural problems
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that ask us to optimize an objective function given a fixed budget, or given some physical
limitations on what is possible.

Mathematically, we are looking at the problem: maximize f(x,y) subject to the con-
straint that g(x,y) = ¢ for some constraint equation g and some constant c.

How do we do this? To find an interior maximum, we look for places where V f is zero.
But optimizing along a constraint, we don’t care if we can increase the value of f by leaving
the constraint—we just need the directional derivative to be zero in the direction tangent to
g(x,y) = c. This is equivalent to asking for V f to be perpendicular to that boundary.

But the boundary is just a contour or level set of g, so we know that Vg is perpendicular
to the boundary. So we're really looking for points where V f points in the same (or exactly
opposite) direction to Vg. We can impose this condition algebraically by looking for points
where Vf = AVg.

Example 4.18. Let’s find the maximum and minimum values of f(z,y) = z+y on 22 +3? =
4.

x2+y2=4
x+y=-3
x+y=-2
x+y=-1
x+y=0
x+y=1
x+y=2
x+y=3

We compute V f(z,y) = (1,1) and Vg(x,y) = (2x,2y), so we are looking for points where
(1,1) = A(2z,2y) for some A € R. This gives us x =y = 1/(2)).

To get specific values, we substitute this back into 2%+ 3? = 4. We get 22? = 4 so 2* = 2
and thus z = +v/2. We know that y = 2 so we have two critical points: (v/2,v/2) and
(—v2, —v/2). (We can also see that A = 1/(2x) = 1//8).

Plugging in values, we see that we have a maximum of 2v/2 at (\/5, \/5) and we have a
minimum of —2/2 at (—\/_, —\/5)

Importantly, notice that this is exactly where you’d expect the maximum and minimum

to be.

Example 4.19. Now let’s find the maximum and minimum of f(z,y) = 3z+y on 2% +y* = 4.
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We compute that V f(x,y) = (3,1), so we get 3 = A2z and 1 = A2y. This gives us x = 3y,
and thus we get 10y? = 4, or y = +,/2/5. So our two critical points are (31/2/5,/2/5)
and (—3y/25, ~/2]5)

Plugging in values gives a maximum of 10/2/5 at (3/2/5,/2/5) and a minimum of

—104/2/5 at (—3+/2/5, —/2/5).
We sometimes like to express these in terms of the Lagrangian function.

Definition 4.20. If we want to optimize f(z,y) subject to g(x,y) = ¢, then the Lagrangian

function of the problem is

L(l’,y,)\) = f(:lt,y) - )\(g(x,y) - C)'

Unconstrained critical points of £ correspond to critical points of the original constrained

optimization.

Example 4.21. Suppose we're running a factory, and our output depends on three inputs:
our output is f(z,y, z) = 2023/592/521/5

Each input has a cost. x costs 50, y costs 30, and z costs 20. If our total budget is
$18,000, how can we maximize the output?

Our budget constraint is 50x + 30y + 20z = 18000. Then we can set up the Lagrangian:

L(x,y,z,A) = 202*5y*/221/5 — \(502 + 30y + 20z — 18000)

yz/s 1/5
23/5,1/5
Ly =8 55— +30A
x3/5y2/5

L = 18000 — 502 — 30y — 20=z.
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(We see that we get the constraint equation back as the partial with respect to A). Solving

for \ gives

6 y2/521/5
A= 25 12/5
4 3/5,1/5

_ 1x3/5y2/5
o 5 4/5

Solving for z/° in the first two equations and setting them equal gives

25 15
g>\(93/y)2/5 = Z>\(?J/l’)3/5
o0z = 4by

x = 9y/10.

Similarly, we can solve for 2%/° and equate the last two equations, which gives

1745)\3;3/5/21/5 = ALY )25
15y = 20z
z = 3y/4.

Plugging this all into the fourth (constraint) equation gives

0 = 18000 — 50(9y/10) — 30y — 20(3y/4)
= 18000 — 45y — 30y — 15y = 20000 — 90y
y = 200.

This also gives us x = 180 and z = 150.

How do we know this is a maximum? Well, the graph of the constraint is a plane, and
the region of possible solutions is a triangle where the plane intersects the x = 0, y = 0, and
z = 0 planes (since we can’t produce negative amounts). On this entire boundary region
the output is zero, and the output at our critical point is ~ 462 > 0, so we know that the

boundary points are minima and the critical point is a maximum.
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This brings us back to the problem of finding global extrema on a region. The basic
approach is to look for critical points in the interior, and then use Lagrange multipliers to

find any extrema on the boundary.
Example 4.22. Maximize and minimize f(z,y) = (x—1)?+ (y—2)? subject to 2? +y* < 45.
First we look for interior critical points. We have
folz,y) = 2(x — 1) =1
fyla,y) = 2(y = 2) y =2

so the unique critical point is at (1, 2).

We could use the second derivative test: we compute

fm(x,y):2 fzyzo
fo(z,y) =2
D=4>0

and since D > 0, f,, > 0 we know this is a local minimum.

But we don’t actually need to do this since we're just looking for largest and smallest
point. So we observe that f(1,2) = 0 and move to the boundary. (It is in fact clear that this
is a global minimum, since f is a sum of squares and can never give us a negative output).

On the boundary, we have the constraint z* + y? = 45 and we have Vf(z,y) = (2(z —
1),2(y — 2)) and Vg(z,y) = (2x,2y). So we calculate

2z —1) = A2z i
x
2y — 2) = A2y A—Y—2
r—1 y—2 !
z Y
Ty —Yy =Y — 20 20 = y.
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Plugging this into the constraint gives us 522 = 45 so 22 = 9 and = £3. Then we have
y = £6. So the two critical points are (3,6) and (—3,—6).

We calculate
13,6)=2"+4 =20 f(=3,-6) = (—4)* + (~8)* = 48.

Thus the global maximum is 48, achieved at (—3,—6), while the global minimum is 0,
achieved at (1,2).
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What does A mean? It tells us how much the optimum changes when you change the
constraint c. Geometrically, we have Vf = AVg. Vg is, roughly speaking, how quickly ¢
increases if we move the contour; V f is of course how quickly f changes when we move the
contour. A is the ratio between these, and thus how quickly f changes when we move c.

Alternatively, we can compute this with the chain rule. We know that g—i = )\g—g and

of _ 9y dg _ ; — .
3y = )\@, and of course 2Z = 1 since ¢ = g(x,y). Then we can compute:

de
G _ofds  ofdy
de  Oxde Oy dc
Ogds  \0gdy _\dy

- "0z de oyde “de

Example 4.23. Let’s find the global extrema of f(z,y) = 2%y + 3y*> — y on 2% + y* < 10

To find interior critical points, we compute:
(2zy, 2% + 6y — 1) = (0,0)

The first equation tells us that either + = 0 or y = 0. Thus the critical points are
(0,1/6),(1,0), and (—1,0). All three are in the region, so we consider all of them; we
get values of —1/12,0,, and 0 respectively.
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Now we want to find extrema on the boundary. We compute:

fo =20y = N2x = g,
fy=2>+6y—1=X2y=g,
A=y
r? = 2y% — 6y + 1
10 —y? =2y —6y+1
0=3y" -6y —9=3("—-2y-3) =3y -3)(y+1)

So we get y = 3 or y = —1. This gives us critical points (41, 3) and (£3,—1).

f(£1,3) =3427 -3 =27
F(£3,-1)=9+3+1=13

(Incidentally, we can compute that A(41,3) = 3, which tells us that at (1, 3), increasing
¢ by 1 would increase the maximum value of f by about 3).

So over the whole region, the global minimum is —1/12 at (0,1/6) and the global maxi-
mum is 27 at (£1, 3).

As a note: why do we always get both positive and negative = values for each y? The

2

x variable only shows up in an z° so it can never affect anything whether it’s positive or

negative. We see this represented in the graph, because it is left-right symmetric.

| =—xeyt=10

xzyfayz—y:D
x2y+3y2—y=5
Ly+3y-y=10
xzyfayz—yzﬂs
x2y+3y2—y=2[)
Zy+3y*-y=25
xzyfayz—yZSD

http://jaydaigle.net/teaching/courses/2018-spring-212/ 60


http://jaydaigle.net/teaching/courses/2018-spring-212/

	Optimization
	Critical points and Local Extrema
	Global Extrema and the Extreme Value Theorem
	Constrained Optimization and Lagrange Multipliers


