Math 212 Spring 2018 Multivariable Calculus Practice HW 7.5 For Test 3 on Wednesday, April 11

1.	17.3.27	13.	18.1.25
2.	17.3.29	14.	18.2.1
3.	17.3.37	15.	18.2.3
4.	17.4.1	16.	18.2.5
5.	17.4.5	17.	18.2.9
6.	17.4.7	18.	18.2.11
7.	17.4.16	19.	18.2.17
8.	18.1.1	20.	18.2.19
9.	18.1.3	21.	18.2.21
10.	18.1.5	22.	18.2.25
11.	18.1.7 (without computing an integral)		18.2.29
12.	18.1.13 (without computing an integral)		18.2.31

- 1. Find the mass of a wire lying along the straight line from (1,1) to (2,4) with density 3x + 2y.
- 2. Find the mass of a wire lying along the arc of the unit circle from (0,1) to (1,0) with density xy.
- 3. Consider a wire lying along the pathparametrized by $\vec{r}(t) = (3t^2 2, t^2 + 1)$ for $1 \le t \le \sqrt{2}$. If the density is given by $\delta(x, y) = x + y$, calculate the mass of the wire. Now sketch this parametrization. What easier thing could you have done?
- 4. Compute $\int_C f \, d\vec{r}$ if $\vec{r}(t) = (2t, t^3/3, t^2)$ for $0 \le t \le 2$ and f(x, y, z) = 3yz + x.