Mathematica Tipsheet

- The most common sources of error are capitalization, using the wrong type of brackets, missing or misplaced commas, and misspelled words.
- Mathematica remembers everything you tell it. But it doesn't listen to everything you type. It will pay attention to commands you tell it to evaluate, when you tell it.
- You can enter commands by hitting shift + enter, or by hitting the enter key next to the numerical keypad. Just hitting enter will just start a new line.
- Mathematica is case-sensitive; \mathbf{x} and X do not mean the same thing. Built-in Mathematica commands are always written in CamelCase, which means that the first letter of each distinct word is capitalized. For instance, write E and Pi for the mathematical constants. Sin and Cos will work; sin and cos will not. At various points we write PlotRange and GridLines.
- Mathematica uses square brackets to denote inputs to functions. $\operatorname{Cos}[\mathrm{x}]$ means $\cos (x) ; \operatorname{Cos}(\mathrm{x})$ will return an error. It uses curly braces to construct lists; we will mainly use this to feed in lists of data or parameters for graphs. Mathematica uses parentheses to control order of operations, but not for else.
- You can use any variable names you want. thisisavariable works perfectly fine as a variable, as does x213.
- If you write two variables or function names with no space between them, Mathematica will assume you actually have one long variable. $\mathrm{x} * \mathrm{y}$ and x y both mean $x \cdot y$; xy is one variable whose name is "xy."
- You can set the value of a variable with $=$. If you write $\mathrm{x}=3$, every x is the same as a 3 .
- Anything in dark blue has no value assigned. Anything in light blue is bound locally. If Mathematica knows a value for something, it will be black.
- If you want to test for whether two things are equal, use a double equals sign. $3==3$ returns True and $3==5$ returns False.
- Define new functions like $f\left[x_{-}\right]:=x^{\wedge} 2+1$. Don't forget the underscore and colon.
- Mathematica will return exact outputs given exact inputs. If you want decimals, either use decimals in your inputs, or plug your answer into the function N , e.g. $\mathrm{N}[\mathrm{Pi}+1]$.
- If f is a function, then you can plot it with a command like Plot $[f[x],\{x, 0,5\}]$. This tells us to plot the function f with domain going from 0 to 5 . Similarly,
Plot[Sin $\left.[\mathrm{x}]+\mathrm{x}^{\wedge} 2,\{\mathrm{x},-\mathrm{Pi}, \mathrm{Pi}\}\right]$ will work fine.
- There are many options you can add to Plot, by placing a comma after the domain. One helpful one is PlotRange. Plot $[f[x],\{x, 0,3\}, P l o t R a n g e->\{0,5\}]$ will force the function to display the y-axis from 0 to 5 , overriding the automatic scaling.

