
Determining Unitary Equivalence to a 3× 3
Complex Symmetric Matrix from the Upper

Triangular Form

Jay Daigle
Advised by Stephan Garcia

April 4, 2008



2



Contents

1 Introduction 5

2 Technical Background 9

3 The Angle Test 13

4 Breaking Down the Problem 19
4.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 The One Eigenvalue Case . . . . . . . . . . . . . . . . . . . . 20
4.3 The Two Eigenvalue Case . . . . . . . . . . . . . . . . . . . . 22
4.4 The Three Eigenvalue Case . . . . . . . . . . . . . . . . . . . 28

References 37

3



4 CONTENTS



Chapter 1

Introduction

A complex symmetric matrix (CSM) is a square complex matrix T such that
T = T t, where T t denotes the transpose of the matrix T . However, since any
given operator has many different matrix representaions, we wish to identify
those linear operators that can be represented as a complex symmetric matrix
with respect to some orthonormal basis. To do this we introduce the concept
of unitary equivalence.

Definition. Let U be a n × n matrix and let U∗ denote the adjoint (i.e.,
conjugate transpose) of U . We say U is unitary if UU∗ = U∗U = I.

Definition. Let T and S be n× n matrices. We say T and S are unitarily
equivalent if there exists some unitary matrix U such that U∗TU = S.

It turns out that two matrices are unitarily equivalent precisely when
they represent the same operator with respect to two (possibly different)
orthonormal bases. Thus the class of matrices we wish to study is precisely
the class of matrices which are unitarily equivalent to a complex symmetric
matrix (UECSM).

A powerful tool for analyzing such matrices (Theorem 1.1 below) comes
from Garcia and Putinar [2, 3]. We first require a few preliminaries.

Definition. A function C : Cn → Cn is a conjugation if

1. C is antilinear (i.e., C(ax+ y) = aCx+ Cy for all a ∈ C, x, y ∈ Cn).

2. C is isometric (i.e., 〈x, y〉 = 〈Cy,Cx〉 for all x, y ∈ Cn).

3. C is an involution (i.e., C2 = I).
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A simple example of a conjugation is the standard conjugation J : Cn →
Cn, which is defined by

J(x1, . . . , xn) = (x1, . . . , xn).

Definition. Let T be a n×n complex matrix and let T ∗ denote its conjugate
transpose. Let C be a conjugation on Cn; then T is C-symmetric if T =
CT ∗C.

We now have the following theorem:

Theorem 1.1. Let T be a n× n complex matrix. T is UECSM if and only
if T is C-symmetric for some conjugation C.

Proof. Suppose T is C-symmetric and let {ei} be an orthonormal basis with
Cei = ei (for a proof that such a basis exists, see [3, Lemma 1]). Then

〈Tei, ej〉 = 〈ei, T ∗ej〉
= 〈Cei, T ∗Cej〉
= 〈CT ∗Cej, ei〉 (by the isometric property)

= 〈Tej, ei〉.

Thus, since 〈Tei, ej〉 is the jith entry of T when expressed with respect to
the orthonormal basis {ei}, we have represented T as a CSM with respect to
this basis. Therefore the matrix T is UECSM.

Conversely, suppose T is UECSM. It must be complex symmetric with
respect to some orthonormal basis {ui}. Define C by extending Cui = ui
antilinearly to all of Cn. Then as above, we have 〈Tui, uj〉 = 〈CT ∗Cuj, ui〉
for all i, j, but since T is symmetric with respect to {ui} we have 〈Tui, uj〉 =
〈Tuj, ui〉. Therefore 〈CT ∗Cui, uj〉 = 〈Tui, uj〉 for all i, j, and thus T = CT ∗C.

Though many examples of matrices which are UECSM are known, no
complete classification exists. In this paper we complete a classification of
the 3× 3 matrices which are UECSM. Since unitary equivalence is an equiv-
alence relation, we may pick one representative of each equivalence class and
determine whether this matrix is UECSM. To select this representative we
use Schur’s Theorem (see [5] for details):
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Theorem 1.2 (Schur). Given a n× n matrix A with eigenvalues λ1, . . . , λn
in any prescribed order, there is a unitary matrix U ∈Mn such that

U∗AU = T = [tij]

is upper triangular, with diagonal entries tii = λi, i = 1, . . . , n. That is,
every square matrix A is unitarily equivalent to a triangular matrix whose
diagonal entries are the eigenvalues of A in a prescribed order.

Thus, given a 3× 3 matrix A, we know it is unitarily equivalent to a (not
necessarily unique) matrix of the form λ1 a b

0 λ2 c
0 0 λ3

 , (1.1)

where λi are the eigenvalues of A in any given order. In Chapter 2 we show
that further simplifying assumptions can be made to yield a particularly easy-
to-work-with form. We provide a complete classification of which matrices
in this form are UECSM, allowing us to determine whether any given 3× 3
matrix is UECSM.
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Chapter 2

Technical Background

In this section we present several lemmas that allow us to conduct our classi-
fication. First we describe some simple categories of matrices that are known
to be UECSM. The results in this section are known and can be found in
[2, 3, 4].

We begin with a definition:

Definition. We say a matrix is algebraic of degree n if its minimal polyno-
mial is a degree n polynomial. In other words, T is of degree n if there is
some polynomial f of degree n with f(T ) = 0, but no polynomial g of degree
less than n such that g(T ) = 0.

We now present a theorem due to Garcia and Wogen [4].

Theorem 2.1. If T is a square matrix that is algebraic of degree two, then
T is UECSM.

This theorem has a few useful corollaries:

Corollary 2.2. All 1× 1 and 2× 2 matrices are UECSM.

Proof. The degree of the minimum polynomial of a n × n matrix is always
≤ n. Thus every 1 × 1 and 2 × 2 matrix is algebraic of degree ≤ 2, and by
Theorem 2.1 is UECSM.

Corollary 2.3. Every rank 1 matrix is UECSM.

Proof. Every rank one operator has the form Tx = 〈x, v〉u for some u, v ∈
Cn. But then T 2 = 〈(〈x, v〉u), v〉u = 〈x, v〉〈u, v〉u = 〈u, v〉T , so we have
T 2 − 〈u, v〉T = 0 and T is algebraic of degree two. Thus by Theorem 2.1, T
is UECSM.
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In our attempt to classify the 3 × 3 matrices which are UECSM, it will
be useful to be able to decompose our matrices into simpler matrices. The
next lemma shows that we can, in some instances, do this:

Lemma 2.4. Suppose T =
⊕n

i=1 Ti, where Ti is Ci symmetric for some Ci.
Then T is C-symmetric for C =

⊕n
i=1Ci.

Proof. We prove the result for n = 2; the theorem then follows by induction.
Let T1 and T2 be square complex matrices and C1, C2 conjugations such that
C1T1C1 = T ∗1 and C2T2C2 = T ∗2 . Then we claim C = C1⊕C2 is a conjugation.
Antilinearity is trivially preserved by direct summation, and C2 = I since(

C1 0
0 C2

)(
C1 0
0 C2

)
=

(
C1 ◦ C1 0

0 C2 ◦ C2

)
=

(
I 0
0 I

)
.

To show C is isometric, let x = (x1, x2) be in the domain of T . Since
(x1, 0) and (0, x2) are orthogonal we have ‖(x1, 0)‖2+‖(0, x2)‖2 = ‖(x1, x2)‖2.
Thus

‖Cx‖2 =

∥∥∥∥( C1 0
0 C2

)(
x1

x2

)∥∥∥∥2

=

∥∥∥∥( C1x1

C2x2

)∥∥∥∥2

=

∥∥∥∥( C1x1

0

)∥∥∥∥2

+

∥∥∥∥( 0
C2x2

)∥∥∥∥2

= ‖x1‖2 + ‖x2‖2 = ‖x‖2.

Thus C is a conjugation. Now we show that T is C-symmetric:

CTC =

(
C1 0
0 C2

)(
T1 0
0 T2

)(
C1 0
0 C2

)
=

(
C1T1C1 0

0 C2T2C2

)
=

(
T ∗1 0
0 T ∗2

)
= T ∗.

Thus we have the desired result.

Our final lemma allows us to make certain simplifying assumptions about
the structure of our matrix:

Lemma 2.5. If T is a C-symmetric matrix, then so is aT+bI for all a, b ∈ C.
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Proof. Consider the matrix C(aT + bI)C. We have

C(aT + bI)C = C(aT )C + C(bI)C

= aCTC + bC2

= aT ∗ + bI

= (aT + bI)∗,

which is the desired result.
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Chapter 3

The Angle Test

Suppose that T is a C-symmetric matrix and that u is a generalized eigenvec-
tor with eigenvalue λ of order n (i.e., (T −λI)nu = 0 but (T −λI)n−1u 6= 0).
We have

(T ∗ − λI)k(Cu) = C((T − λI)ku)

for all k, and thus Cu is a generalized eigenvector of T ∗ with eigenvalue λ
of order n. Furthermore, since C is an isometry we have ‖u‖ = ‖Cu‖. Note
that the case k = 1 implies that if u is an eigenvector of T , then Cu is an
eigenvector of T ∗.

Now suppose the eigenspace of T corresponding to the eigenvalue λ is
one-dimensional, and u is a unit eigenvector with eigenvalue λ. Let v be
a unit eigenvector of T ∗ with eigenvalue λ. Then since each eigenspace is
one-dimensional, these eigenvectors are unique up to multiplication by a
unimodular constant, and we have

Cu = αv

for some unimodular α.
A similar argument will hold for generalized eigenvectors as long as we

have a canonical method for choosing a basis for the generalized eigenspace
which is respected by C. Our next lemma provides such a canonical basis:

Lemma 3.1. Let T be a n× n matrix with eigenvalues λ1, . . . , λr. Suppose
that T has precisely one Jordan block for each eigenvalue. Let

K = ker(T − λiI)k 	 ker(T − λiI)k−1

13
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and
K̂ = ker(T ∗ − λiI)k 	 ker(T ∗ − λiI)k−1

such that K 6= {0}, and let u ∈ K and v ∈ K̂ be unit vectors. Then Cu = αv
for some unimodular constant α.

Proof. It is clear from our discussion that Cu is a generalized eigenvector
of T ∗ with eigenvalue λ of order k, and thus is an element of K̂. Since
there is only one Jordan block for λi in the Jordan form of T ∗ we have that
dim ker(T ∗ − λiI)k = k, and thus dim K̂ = 1. Then since v is non-zero it
must span K∗, and so there is some scalar with αv = Cu. But ‖v‖ = ‖Cu‖,
so |α| = 1.

We are now prepared to state and prove a necessary condition for a matrix
T to be C-symmetric.

Lemma 3.2 (The Angle Test). Let T be a n × n matrix with r distinct
eigenvalues λ1, . . . , λr which is UECSM, and suppose T has precisely one
Jordan block for each eigenvalue. Let

K = ker(T − λiI)k 	 ker(T − λiI)k−1

and
L = ker(T − λjI)l 	 ker(T − λjI)l−1,

and let K̂ and L̂ be the analogous spaces for T ∗. Let u1 ∈ K, u2 ∈ L, v1 ∈
K̂, v2 ∈ L̂. Then

|〈u1, u2〉| = |〈v1, v2〉|. (3.1)

Proof. If K (or L) is {0}, then so is K̂ (or L̂). We can see that u1 = v1 = 0
(or u2 = v2 = 0) and so

|〈u1, u2〉| = |〈v1, v2〉| = 0.

So assume K,L 6= {0}. By the isometric property of C,

〈u1, u2〉 = 〈Cu2, Cu1〉.

By Lemma 3.1 there exist unimodular α1, α2 with Cui = αivi. Thus we have

〈u1, u2〉 = 〈Cu2, Cu1〉
= 〈α2v2, α1v1〉
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= α1α2〈v1, v2〉.

Since αi are unimodular, taking the absolute value of both sides yields Equa-
tion (3.1).

Lemma 3.2 provides a useful technique to prove that a given matrix with
a single Jordan block for each eigenvalue is not UECSM: find a canonical
basis for the generalized eigenspaces of T and T ∗ as described in Lemma
3.1, take the pairwise inner products of the basis eigenvectors, and check
whether the norms are all the same. In particular, if a n × n matrix T has
n distinct eigenvalues then the pairwise inner products of the eigenvectors
must have matching norms. If equation (3.1) holds for all pairs of vectors in
our canonical basis, we say that T passes the Angle Test.

While the condition in Lemma 3.2 is clearly a necessary condition for T
to be UECSM, it is not clear that it is sufficient. However, Garcia showed
[1] that the following stronger condition is sufficient when T has distinct
eigenvalues:

Theorem 3.3. Let T be a 3 × 3 matrix with distinct eigenvalues λ1, λ2, λ3.
Let ui be a unit eigenvector of T with eigenvalue λi, and let vi be a unit
eigenvector of T ∗ with eigenvalue λi. Then T is UECSM if and only if T
passes the Angle Test and there exist unimodular constants b1,2, b1,3, b2,3 such
that

bi,j =
〈ui, uj〉
〈vj, vi〉

whenever 〈vj, vi〉 6= 0, and the matrix

B =

 1 b1,2 b1,3

b1,2 1 b2,3

b1,3 b2,3 1


has rank one.

In fact, a similar condition holds for any n × n matrix with n distinct
eigenvalues. We omit the proof for brevity. However, we will prove the
analogous (and somewhat more difficult) result for the case where a 3 × 3
matrix T has only two distinct eigenvalues.

Let T be a 3×3 C-symmetric matrix with two distinct eigenvalues. With-
out loss of generality we may, by Lemma 2.5, assume that the eigenvalues
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are 0 and 1, and that 0 has multiplicity two. Furthermore, we assume that
dim(kerT ) = 1, since whenever dim(kerT ) = 2 then T is a rank one matrix
and the case is trivial due to Corollary 2.3. Let

• u0 be a unit eigenvector of T corresponding to the eigenvalue 0,

• u00 be a unit generalized eigenvector of T corresponding to the eigen-
value 0 that is orthogonal to u0,

• u1 be a unit eigenvector of T corresponding to the eigenvalue 1.

Furthermore, T ∗ also has eigenvalues 0 and 1 with the same multiplicity. Let

• v0 be a unit eigenvector of T ∗ corresponding to the eigenvalue 0,

• v00 be a unit generalized eigenvector of T ∗ corresponding to the eigen-
value 0 that is orthogonal to v0,

• v1 be a unit eigenvector of T ∗ corresponding to the eigenvalue 1.

Lemma 3.1 tells us that C determines a triple of unimodular constants
α0, α00, α1 with

Cu0 = α0v0,

Cu00 = α00v0,

Cu1 = α1v1.

Thus for any i, j we have

〈ui, uj〉 = 〈Cuj, Cui〉 = 〈αjvj, αivi〉 = αiαj〈vj, vi〉.

Let B be the matrix given by

B =

 α0

α00

α1

( α0 α00 α1

)
.

Whenever 〈vj, vi〉 6= 0 we have

bi,j = αiαj =
〈ui, uj〉
〈vj, vi〉

.



17

Furthermore, we see that bi,i = 1 for all i, and that bi,j = bj,i for all i, j. Thus
the matrix B is self-adjoint. Also, note that rank(B) = 1 since

colspace(B) = span


 α0

α00

α1

 .

Finally, note that since Tu00 ∈ ker(T ), we have Tu00 = au0 for some
a ∈ C. But

T ∗v00 = CTCv00 = CTα00u00 = α00Cau0 = (aα00α0)v0.

Thus the coefficients of u0 in Tu00 and v0 in T ∗v00 are related by a unimodular
factor of α00α0

a
a
.

We are now prepared to state our main theorem.

Theorem 3.4. Let T be a 3 × 3 matrix under the above hypotheses, with
Tu00 = au0. We have that T is C-symmetric if and only if there exists a set
of unimodular constants α0, α00, α1 such that

1. 〈ui, uj〉 = αiαj〈vj, vi〉.

2. The function C defined by letting Cui = αivi and extending antilinearly
to C3 is an involution.

3. T ∗v00 = (aα00α0)v0.

Proof. We wish to show that C is a conjugation and that CT ∗C = T . We
see that C is antilinear by construction and an involution by condition (2).
We wish to show that it is an isometry. The ui form a basis for our space,
so let x =

∑
aiui. We have

‖x‖2 = 〈x, x〉

=

〈 ∑
i∈{0,00,1}

aiui,
∑

j∈{0,00,1}

ajuj

〉

=
∑

i,j∈{0,00,1}

ai

〈
ui,
∑

ajuj

〉
=

∑
i,j∈{0,00,1}

ai
∑

aj〈ui, uj〉
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=
∑

i,j∈{0,00,1}

aiaj〈ui, uj〉

=
∑

i,j∈{0,00,1}

aiajαiαj〈vj, vi〉

=
∑

i,j∈{0,00,1}

aiaj〈αjvj, αivi〉

=
∑

i,j∈{0,00,1}

aiaj〈Cuj, Cui〉

=

〈 ∑
j∈{0,00,1}

ajCuj,
∑

i∈{0,00,1}

aiCui

〉
= 〈Cx,Cx〉
= ‖Cx‖2.

Thus C is indeed a conjugation.
We now wish to show that CT ∗C = T . Since both maps are linear we

only need to show that they agree on the basis {u0, u00, u1}. Note that since
C is an involution we have Cvi = αiui. For u0 and u1 we have

CT ∗Cui = CT ∗αivi

= αiCλivi

= αiλiαiui

= λiui

= Tui.

Now consider CT ∗Cu00. We get

CT ∗Cu00 = α00CT
∗v00

= α00C(aα00α0)v0

= α00aα00α0Cv0

= aα0α0u0

= au0

= Tu00.

Thus CT ∗C = T and we have that T is C-symmetric.



Chapter 4

Breaking Down the Problem

4.1 Our Approach

By Schur’s Theorem (Theorem 1.2), any 3×3 matrix T is unitarily equivalent
to a matrix of the form shown in (1.1). Thus a matrix is UECSM if and only
if its upper triangular form is UECSM. By Lemma 2.5 we may, without loss
of generality, subtract a multiple of the identity to ensure one eigenvalue is
0. If there is more than one eigenvalue we may further divide by a scalar to
obtain a matrix with an eigenvalue of 1. Based on the number of distinct
eigenvalues we have the following three cases:

Case 1: One distinct eigenvalue.

We may assume T has the form

T =

 0 a b
0 0 c
0 0 0

 . (4.1)

Case 2: Two distinct eigenvalues.

We may assume T has the form

T =

 0 a b
0 0 c
0 0 1

 . (4.2)

19
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Case 3: Three distinct eigenvalues.

We may assume T has the form

T =

 0 a b
0 1 c
0 0 λ

 (4.3)

for some λ 6∈ {0, 1}.

4.2 The One Eigenvalue Case

Proposition 4.1. A 3 × 3 matrix T in the upper triangular form given in
(4.1) is UECSM if and only if one of the following holds:

1. a = 0.

2. c = 0.

3. |a| = |c|, a, c 6= 0.

Proof. The proof breaks down into three cases.

Case 1: a = 0 or c = 0.

We have

T =

 0 0 b
0 0 c
0 0 0

 or T =

 0 a b
0 0 0
0 0 0

 .

In either case, T is a rank one matrix and thus UECSM by Corollary 2.3.

Case 2: a, c 6= 0, |a| = |c|.

Define an antilinear map C : C3 → C3 by

C

 x
y
z

 =

 0 0 1
u

0 ā
cu

0
u 0 0

 x
y
z
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where u is a unimodular constant such that uc ∈ R. Then we have

CTC

 x
y
z

 = CT

 uz̄
āy
cu

ux̄

 = C

 |a|ȳ
cu

+ bux̄
cux̄
0


=

 0
āx c̄u

cu

|u|b̄x+ |a|yu
c̄u

 =

 0
āx

b̄x+ |c|y
c


=

 0 0 0
ā 0 0
b̄ c̄ 0

 x
y
z

 .

Therefore CTC = T ∗ and thus T is UECSM.

Case 3: a, c 6= 0, |a| 6= |c|.

Let e1, e2, e3 be the standard basis vectors for C3. We can see that T has
precisely one one-dimensional eigenspace for the eigenvalue 0, spanned by e1.
Similarly, T ∗ has precisely one one-dimensional eigenspace, spanned by e3.
By Lemma 3.1, if T is C-symmetric then Ce1 = αe3 for some |α| = 1. Since
C is an involution, this gives us

e1 = Cαe3 = αCe3

and thus Ce3 = αe1. We see that e2 is orthogonal to e1 and e3, so since C
is an isometry we must have Ce2 orthogonal to Ce1 = αe3 and Ce3 = αe1.
Thus Ce2 must be some scalar multiple of e2, and in fact we have Ce2 = βe2

where |β| = 1 since C is norm-preserving.

Now Te2 = ae1. But

Te2 = CT ∗Ce2

= CT ∗(βe2)

= βC(ce3)

= αβce1

and thus a = αβc. Since |α| = |β| = 1 this gives us |a| = |c|, a contradiction.
Thus in this case T is not UECSM.
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4.3 The Two Eigenvalue Case

Proposition 4.2. A 3 × 3 matrix T in the upper triangular form given in
(4.2) is UECSM if and only if one of the following holds:

1. a = 0.

2. b = c = 0.

3. a, c 6= 0 and |b+ ac|2 = |c|2 + |c|4.

Proof. The proof breaks down into five cases.

Case 1: a = 0. We have

T =

 0 0 b
0 0 c
0 0 1

 .

Thus T is a rank one matrix, and is UECSM by Corollary 2.3.

Case 2: b = c = 0

It is clear that T is the direct sum of a 2× 2 matrix and a 1× 1 matrix:

T =

 0 a 0
0 0 0
0 0 1

 .

By Corollary 2.2, every 2× 2 matrix and every 1× 1 matrix is UECSM, and
the direct sum of matrices which are UECSM is also UECSM by Lemma 2.4.
Thus T is UECSM.

Case 3: c = 0 and a, b 6= 0.

We have

T =

 0 a b
0 0 0
0 0 1

 .

We see that T has a one-dimensional eigenspace with eigenvalue 1, and
some eigenspace with eigenvalue 0. Since T has 1-dimensional nullspace,
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the eigenspace with eigenvalue 0 cannot be 2-dimensional. Thus T has
one one-dimensional eigenspace with eigenvalue 0, and one one-dimensional
eigenspace with eigenvalue 1. These spaces are spanned by the following unit
vectors:

u0 =

 1
0
0

 with eigenvalue 0,

u1 =


b√
|b|2+1

0
1√
|b|2+1

 with eigenvalue 1.

Note that 〈u0, u1〉 = b√
|b|2+1

.

Similarly, T ∗ has two one-dimensional eigenspaces:

v0 =

 0
1
0

 with eigenvalue 0,

v1 =

 0
0
1

 with eigenvalue 1.

Note that 〈v0, v1〉 = 0.
But since b 6= 0 we have |〈u0, u1〉| 6= |〈v0, v1〉|, and T fails the Angle Test

of Lemma 3.2. Thus T is not UECSM.

Case 4: a, c 6= 0.

We have

T =

 0 a b
0 0 c
0 0 1

 .

We use the conditions of Theorem 3.4: T is UECSM if and only if there
exist unimodular α0, α00, α1 such that

1. 〈ui, uj〉 = αiαj〈vj, vi〉.

2. The function C defined by letting Cui = αivi and extending antilinearly
is an involution.

3. T ∗v00 = (aα00α0)v0, where a is as in T .
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It is clear that if such αi exist then the matrix

B =

 α0

α00

α1

( α0 α00 α1

)
has rank one. Conversely, if there exists some matrix B such that bi,i = 1,
|bi,j| = 1, B is self-adjoint, and whenever 〈vj, vi〉 6= 0 we have

bi,j =
〈ui, uj〉
〈vj, vi〉

,

then this matrix will factor as above and we will have a triple (α0, α00, α1)
that satisfies condition (1).

Looking now at the normalized eigenvectors of T and T ∗, we get that

u0 = (1, 0, 0),

u00 = (0, 1, 0),

u1 =
1√

|b+ ac|2 + |c|2 + 1
(b+ ac, c, 1),

and

v0 =
1√

1 + |c|2
(0, 1,−c),

v00 =
1√

(1 + |c|2)(|ac+ b|2 + |c|2 + 1)
(1 + |c|2,−c(ac+ b),−(ac+ b)),

v1 = (0, 0, 1).

Thus 〈u0, u00〉 = 〈v00, v0〉 = 0, but the other pairs of eigenvectors are not
orthogonal. Assuming that T is UECSM, the Angle Test gives us

|〈u0, u1〉| = |〈v0, v1〉|,∣∣∣∣∣ b+ ac√
|b+ ac|2 + |c|2 + 1

∣∣∣∣∣ =

∣∣∣∣∣ c√
1 + |c|2

∣∣∣∣∣ ,
|b+ ac|2(1 + |c|2) = |c|2(|b+ ac|2 + |c|2 + 1),

|b+ ac|2 = |c|2 + |c|4, (4.4)
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and

|〈u00, u1〉| = |〈v00, v1〉|,
|c|√

|b+ ac|2 + |c|2 + 1
=

|b+ ac|√
(1 + |c|2)(|ac+ b|2 + |c|2 + 1)

,

|c|2(1 + |c|2) = |b+ ac|2,
|c|2 + |c|4 = |b+ ac|2,

which is the same as (4.4). Thus the conditions of the Angle Test are satisfied
if and only if (4.4) holds.

Now consider the matrix

B =

 1 x 〈u0,u1〉
〈v1,v0〉

x 1 〈u00,u1〉
〈v1,v00〉

〈u1,u0〉
〈v0,v1〉

〈u1,u00〉
〈v00,v1〉 1

 ,

where the x is a free unimodular constant that we get since 〈v00, v0〉 = 0. It
is clear that this matrix has rank one only if

x = 〈u0,u1〉
〈v1,v0〉

〈u1,u00〉
〈v00,v1〉 .

But as long as we also have∣∣∣ 〈u1,u0〉
〈v0,v1〉

∣∣∣ =
∣∣∣ 〈u00,u1〉
〈v1,v00〉

∣∣∣ = 1

then we will have rank(B) = 1. Thus as long as (4.4) holds there exists a
triple that satisfies condition (1). In particular, if we set(

α0 α00 α1

)
=
(

1 〈u0,u1〉
〈v1,v0〉 ·

〈u1,u00〉
〈v00,v1〉

〈u0,u1〉
〈v1,v0〉

)
then the conditions in (1) are satisfied. Assuming that (4.4) holds, we get

α0 = 1,

α00 =
b+ ac

1 + |c|2
·
−
√

1 + |c|2
c

· c

1 + |c|2
·
√

1 + |c|23

−(b+ ac)
= 1,

α1 =
−(b+ ac)

c
√

1 + |c|23 ,
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and further we see that

u1 =
1

1 + |c|2
(b+ ac, c, 1),

v00 =
1√

1 + |c|23 (1 + |c|2,−c(ac+ b),−(ac+ b)).

Now assume the preceding conditions are met and let C be defined as
in (2), by extending the map Cui = αivi antilinearly. To see if C is an
involution we calculate Cei where ei are the standard basis vectors. We see
that e1 = u0 and e2 = u00, so Ce1 = α1v1 and Ce2 = α00v00. To compute
Ce3 we use

e3 = (0, 0, 1)

=
√
|b+ ac|2 + |c|2 + 1u1 − (b+ ac)u0 − cu00

= (1 + |c|2)u1 − (b+ ac)u0 − cu00 by (4.4),

which implies that

Ce3 = (|c|2 + 1)Cu1 − (b+ ac)Cu0 − cCu00

= (|c|2 + 1)α1v1 − (b+ ac)α0v0 − cα00v00

=
−1√

(1 + |c|2)3
(c(1 + |c|2), b+ ac, b+ac

c
)

We know that C is an involution if Cvi = αiui for all i. We can see that
v1 = e3 so we need

−1√
(1 + |c|2)3

(c(1 + |c|2), b+ ac, b+ac
c

) = α1u1.

But we have

α1u1 =
〈u0, u1〉
〈v1, v0〉

· 1

1 + |c|2
(b+ ac, c, 1)

=
b+ ac

1 + |c|2
·
−
√

1 + |c|2
c

· 1

1 + |c|2
(b+ ac, c, 1)

=
−1√

(1 + |c|2)3

(
|b+ac|2

c
, b+ ac, b+ac

c

)
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=
−1√

(1 + |c|2)3

(
(1 + |c|2)c, b+ ac, b+ac

c

)
= Ce3

For v0 we have

v0 =
1√

1 + |c|2
(e2 − ce3).

Using our definition of C on the basis vectors we get

Cv0 =
1√

1 + |c|2

(
α00v00 − c

−1√
(1 + |c|2)3

(c(1 + |c|2), b+ ac, b+ac
c

)

)

=

(
(1 + |c|2)(1 + |c|2),−c(ac+ b) + c(b+ ac), (b+ ac)− (ac+ b)

)
(1 + |c|2)2

= (1, 0, 0)

= u0.

Finally, we consider v00. We see that

v00 =
1√

1 + |c|23 (1 + |c|2)e1 − c(ac+ b)e2 − (ac+ b)e3,

and so

Cv00 =
1√

1 + |c|23 (1 + |c|2)α0v0 − c(ac+ b)α00v00 − (ac+ b)Ce3.

Taking each of these terms in turn, we have

(1 + |c|2)α0v0 =
1√

1 + |c|23 (0, (1 + |c|2)2,−c(1 + |c|2)2),

c(ac+ b)α00v00 =
1√

1 + |c|23 (c(ac+ b)(1 + |c|2),−|c|2|ac+ b|2,−c|ac+ b|2),

(ac+ b)Ce3 =
−1√

1 + |c|23 (c(ac+ b)(1 + |c|2), |ac+ b|2, |ac+b|
2

c
).

So we see that

Cv00 =
1

(1 + |c|2)3
(0, (1|c|2)3,−c(1 + 2|c|2 + |c|4) + c(1 + |c|2)2)
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= (0, 1, 0) = α00u00.

Thus for any ui, we get

C2ui = Cαivi = αiαiui = ui,

and we see that C2 is the identity on the basis formed by {u0, u00, u1}. Thus
C is an involution, and condition (2) of Theorem 3.4 is satisfied.

Finally, we wish to show that condition (3) of Theorem 3.4 holds. We
have

Tu00 = (a, 0, 0) = au0,

so we wish to show that
T ∗v00 = av0.

But

T ∗v00 =
1√

1 + |c|23 (0, (1 + |c|2)a,−(1 + |c|2)ac

= a
1√

1 + |c|2
(0, 1,−c)

= av0.

Thus T meets the conditions of Theorem 3.4 if and only if |b+ac|2 = |c|2+|c|4,
and we have the desired result.

4.4 The Three Eigenvalue Case

Proposition 4.3. Let T ∈ M3×3(C) be in the upper triangular form given
in (4.3). Then T is UECSM if and only if one of the following holds:

1. a = b = 0.

2. b = c = 0.

3. a = c = 0.

4. a, c, b− ac 6= 0,

(ac+ b(λ− 1))a

cλ+ c|a|2 + ab(λ− 1)
=

a(|c|2 + |λ|2 − λ)− bc
(1 + | λ

b−ac |2(1 + |a|2))2(a|c|2 − bc)
,
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a(|a|2c+ ab(λ− 1) + cλ)

(1 + |a|2)(ac+ b(λ− 1))
=

a(|c|2 + |λ|2 − λ)− bc
(1 + |λ−1

c
|2)(a|c|2 − bc)

,

a|c|2 − bc
a(|c|2 + |λ|2 − λ)− bc

=
(ac+ b(λ− 1))(|a|2c+ ab(λ− 1) + cλ)

aλ(λ− 1)(1 + | c
λ−1
|2 + |ac+b(λ−1)

λ2−λ |2)(λ2 − λ)
.

Proof. The proof breaks down into seven cases.

Case 1: a = b = 0

It is clear that T is the direct sum of a 1× 1 matrix and a 2× 2 matrix,
and thus UECSM:

T =

 0 0 0
0 1 c
0 0 λ

 .

Case 2: b = c = 0.

Similarly, T is the direct sum of a 2× 2 matrix and a 1× 1 matrix, and
thus UECSM:

T =

 0 a 0
0 1 0
0 0 λ

 .

Case 3: a = c = 0, b 6= 0.

We have

T =

 0 0 b
0 1 0
0 0 λ

 .

If wee define U by

U =

 1 0 0
0 0 1
0 1 0

 ,

we see that U is a unitary matrix. Furthermore,

U∗TU =

 0 b 0
0 λ 0
0 0 1

 ,

and thus T is unitarily equivalent to the direct sum of a 2× 2 matrix and a
1× 1 matrix, and UECSM.
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Case 4: c = 0 and a, b 6= 0.

We have

T =

 0 a b
0 1 0
0 0 λ

 .

We can see that T has three one-dimensional eigenspaces, spanned by the
following unit eigenvectors:

u0 = (1, 0, 0) with eigenvalue 0,

u1 =

(
|a|√
|a|2+1

, |a|
a
√
|a|2+1

, 0

)
with eigenvalue 1,

uλ =

(
|b|√
λ2+|b|2

, 0, λ|b|
b
√
λ2+|b|2

)
with eigenvalue λ.

Similarly, T ∗ has three corresponding eigenspaces with corresponding unit
eigenvectors:

v0 =

(
λ√

(|a|2+1)λ2+|b|2
, −λā√

(|a|2+1)λ2+|b|2
, −b̄√

(|a|2+1)λ2+|b|2

)
,

v1 = (0, 1, 0) ,

vλ = (0, 0, 1) .

By Lemma 2.4 we know that if T is C-symmetric, then

|〈u0, uλ〉| = |〈v0, vλ〉|,

and computing these inner products gives us

|b|√
λ2+|b|2

= |−b̄|√
(|a|2+1)λ2+|b|2

,

which implies that either b = 0, or

λ2 + |b|2 = (|a|2 + 1)λ2 + |b|2

and thus a = 0, which is a contradiction. Thus T is not UECSM.
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Case 5: a = 0, b, c 6= 0.

By an argument similar to the argument in Case 4, T is not UECSM. We
have

T =

 0 0 b
0 1 c
0 0 λ

 .

Now T has three one-dimensional eigenspaces, spanned by the following
unit eigenvectors:

u0 = (1, 0, 0) with eigenvalue 0,

u1 = (0, 1, 0) with eigenvalue 1,

uλ =
1√

1 +
∣∣ c
λ−1

∣∣2 +
∣∣ b
λ

∣∣2 ( bλ , c
λ−1

, 1
)

with eigenvalue λ.

Similarly, T ∗ has three corresponding one-dimensional eigenspaces spanned
by corresponding unit eigenvectors:

v0 =
1√

1 +
∣∣λ
b

∣∣2
(
−λ

b
, 0, 1

)
,

v1 =
1√

1 +
∣∣λ−1

c

∣∣2
(

0, 1−λ
c
, 1
)
,

vλ = (0, 0, 1) .

By Lemma 2.4 we know that if T is C-symmetric, then

|〈u0, u1〉| = |〈v0, v1〉|,

and thus we have

0 =
1√(

1 +
∣∣λ
b

∣∣2)(1 +
∣∣λ−1

c

∣∣2) > 0,

which is a contradiction. Thus T is not UECSM.
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Case 6: a, c 6= 0, b = ac.

It is clear that T has three one-dimensional eigenspaces, spanned by the
following unit eigenvectors:

u0 = (1, 0, 0) with eigenvalue 0,

u1 =
1√

1 + |a|2
(a, 1, 0) with eigenvalue 1,

uλ =
1√

|ac|2 + |c|2 + |λ− 1|2
(ac, c, λ− 1) with eigenvalue λ.

Similarly, T ∗ has three corresponding one-dimensional eigenspaces spanned
by corresponding unit eigenvectors:

v0 =
1√

1 + |a|2
(1,−a, 0),

v1 =
1√

|1− λ|2 + |c|2
(0, 1− λ, c),

vλ = (0, 0, 1) .

We can compute that

|〈u0, uλ〉| =

∣∣∣∣∣ ac√
|ac|2 + |c|2 + |λ− 1|2

∣∣∣∣∣ 6= 0

but
〈v0, vλ〉 = 0,

and thus T fails the Angle Test and is not UECSM.

Case 7: a, c, b− ac 6= 0.

We use the rank one condition given in Theorem 3.3. Simple computation
gives us that T has eigenspaces spanned by the normalized eigenvectors

u0 = (1, 0, 0),

u1 =
1√

1 + |a|2
(a, 1, 0) ,

uλ =
1√

1 + | c
λ−1
|2 + | b(1−λ)−ac

λ2−λ |2

(
ac+b(λ−1)
λ2−λ , c

λ−1
, 1
)
.
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Similarly, T ∗ has eigenspaces spanned by the normalized eigenvectors

v0 =
1√

1 + | λ
b−ac |2 + | aλ

b−ac |2

(
λ

ac−b ,
aλ
b−ac , 1

)
,

v1 =
1√

1 + |λ−1
c
|2

(
0, 1−λ

c
, 1
)
,

vλ = (0, 0, 1).

Computing the pairwise inner products of these eigenvectors in turn gives
us

〈u0, u1〉 =
a√

1 + |a|2
,

〈u0, uλ〉 =
ac+ b(λ− 1)

(λ
2 − λ)

√
1 + | c

λ−1
|2 + | b(1−λ)−ac

λ2−λ |2
,

〈u1, uλ〉 =
|a|2c+ ab(λ− 1) + cλ√

(1 + |a|2)(1 + | c
λ−1
|2 + | b(1−λ)−ac

λ2−λ |2)(λ
2

+ λ)
, (4.5)

〈v0, v1〉 =
a(λ− |λ|2 − |c|2) + bc√

1 + |λ−1
c
|2
√

1 + | λ
b−ac |2 + | aλ

b−ac |2(bc− a|c|2)
,

〈v0, vλ〉 =
1√

1 + | λ
b−ac |2 + | aλ

b−ac |2
,

〈v1, vλ〉 =
1√

1 + |λ−1
c
|2
.

Given our hypotheses that λ 6= 0, 1 and b−ac 6= 0, these are all well-defined.
So now consider the matrix

B =

 1 〈u0,u1〉
〈v1,v0〉

〈u0,uλ〉
〈vλ,v0〉

〈u1,u0〉
〈v0,v1〉 1 〈u1,uλ〉

〈vλ,v1〉
〈uλ,u0〉
〈v0,vλ〉

〈uλ,u1〉
〈v1,vλ〉

1

 .

The conjugate symmetry of the inner product gives us that

〈ui, uj〉
〈vj, vi〉

=
〈uj, ui〉
〈vi, vj〉

,
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and so this matrix has the form of the matrix B from Theorem 3.3.
The matrix B is rank one if and only if the columnspace of B is one-

dimensional, if and only if each column is a scalar multiple of each other
column. Let Bi be the ith column of B; then if B is rank one we must have

B1 =
〈u0, u1〉
〈v1, v0〉

B2,

B2 =
〈u1, uλ〉
〈vλ, v1〉

B3, (4.6)

B3 =
〈u0, uλ〉
〈vλ, v0〉

B1.

The system in (4.6) implies nine equations, three of which are trivially
true. The other six are given by∣∣∣∣〈u0, u1〉

〈v1, v0〉

∣∣∣∣ = 1, (4.7)∣∣∣∣〈u1, uλ〉
〈vλ, v1〉

∣∣∣∣ = 1, (4.8)∣∣∣∣〈u0, uλ〉
〈vλ, v1〉

∣∣∣∣ = 1, (4.9)

〈u0, u1〉〈uλu0〉
〈v1, v0〉〈v0, vλ〉

=
〈uλ, u1〉
〈v1, vλ〉

, (4.10)

〈u0, u1〉〈u1, uλ〉
〈v1, v0〉〈vλ, v1〉

=
〈u0, uλ〉
〈vλ, v0〉

, (4.11)

〈u1, uλ〉〈uλ, u0〉
〈vλ, v1〉〈v0, vλ〉

=
〈u1, u0〉
〈v0, v1〉

. (4.12)

Note first that satisfying the rank-one condition implies satisfying the
Angle Test because of equations (4.7), (4.8), and (4.9). Further, note that
if we assume (4.10), (4.11), and (4.12), then substituting (4.11) into (4.10)
gives

〈uλ, u1〉
〈v1, vλ〉

=
〈u0, u1〉
〈v1, v0〉

〈u0, u1〉〈u1, uλ〉
〈v1, v0〉〈vλ, v1〉

=
〈uλ, u1〉
〈v1, vλ〉

∣∣∣∣〈u0, u1〉
〈v1, v0〉

∣∣∣∣
and thus (4.7) holds. A similar argument gives that (4.8) and (4.9) hold as
well, so the conditions of Theorem 3.3 are met if and only if we have (4.10),
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(4.11), and (4.12). Rearranging these equations gives

〈u0, u1〉〈u0, uλ〉
〈u1, uλ〉

=
〈v0, v1〉〈v0, vλ〉
〈v1, vλ〉

〈u0, u1〉〈u1, uλ〉
〈u0, uλ〉

=
〈v0, v1〉〈v1, vλ〉
〈v0, vλ〉

〈u0, uλ〉〈u1, uλ〉
〈u0, u1〉

=
〈v0, vλ〉〈v1, vλ〉
〈v0, v1〉

Plugging in values from Equation (4.5) gives the desired condition.

This completes our classification of the 3 × 3 matrices from the upper
triangular form. Given a 3× 3 upper triangular matrix, these results allows
us to easily determine whether it is UECSM. Since every matrix is equivalent
to an upper triangular matrix, this is in effect a classification of all 3 × 3
matrices which are UECSM.
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