Non-Minimal Factorization in Numerical Monoids

Jay Daigle
gerald.daigle@pomona.edu
Pomona College

August 20, 2007

Monoids

Monoids

Definition

A monoid is a set M with a binary associative operation $*$ and an identity element, 1. That is, for all $a, b \in M$, we have
(1) $a * b \in M$
(2) $a *(b * c)=(a * b) * c$
(3) $1 * a=a * 1=1$.

Monoids

Definition

A monoid is a set M with a binary associative operation $*$ and an identity element, 1. That is, for all $a, b \in M$, we have
(1) $a * b \in M$
(2) $a *(b * c)=(a * b) * c$
(3) $1 * a=a * 1=1$.

A group without inverses.

Monoids

Definition

A monoid is a set M with a binary associative operation $*$ and an identity element, 1. That is, for all $a, b \in M$, we have
(1) $a * b \in M$
(2) $a *(b * c)=(a * b) * c$
(3) $1 * a=a * 1=1$.

A group without inverses.
Multiplicative: $\mathbb{N},\left\{1+4 k \mid k \in \mathbb{N}_{0}\right\}$.

Monoids

Definition

A monoid is a set M with a binary associative operation $*$ and an identity element, 1. That is, for all $a, b \in M$, we have
(1) $a * b \in M$
(2) $a *(b * c)=(a * b) * c$
(3) $1 * a=a * 1=1$.

A group without inverses.
Multiplicative: $\mathbb{N},\left\{1+4 k \mid k \in \mathbb{N}_{0}\right\}$.
Additive: $\mathbb{M}_{n \times m}, \mathbb{N}_{0}$.

Numerical Monoids

Numerical Monoids

Definition

A Numerical Monoid is an additive submonoid of \mathbb{N}_{0}.

Numerical Monoids

Definition

A Numerical Monoid is an additive submonoid of \mathbb{N}_{0}.

Definition

The numerical monoid generated by n_{1}, \ldots, n_{k}, written $\left\langle n_{1}, \ldots, n_{k}\right\rangle$, is the set $\left\{x_{1} n_{1}+x_{2} n_{2}+\cdots+x_{k} n_{x} \mid x_{i} \in \mathbb{N}_{0}\right\}$.

Numerical Monoids

Definition

A Numerical Monoid is an additive submonoid of \mathbb{N}_{0}.

Definition

The numerical monoid generated by n_{1}, \ldots, n_{k}, written $\left\langle n_{1}, \ldots, n_{k}\right\rangle$, is the set $\left\{x_{1} n_{1}+x_{2} n_{2}+\cdots+x_{k} n_{x} \mid x_{i} \in \mathbb{N}_{0}\right\}$. We say the monoid is primitive if $\operatorname{gcd}\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}=1$.

Numerical Monoids

Definition

A Numerical Monoid is an additive submonoid of \mathbb{N}_{0}.

Definition

The numerical monoid generated by n_{1}, \ldots, n_{k}, written $\left\langle n_{1}, \ldots, n_{k}\right\rangle$, is the set $\left\{x_{1} n_{1}+x_{2} n_{2}+\cdots+x_{k} n_{x} \mid x_{i} \in \mathbb{N}_{0}\right\}$. We say the monoid is primitive if $\operatorname{gcd}\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}=1$. This generating set is minimal if $k \leq j$ whenever $\left\langle n_{1}, \ldots, n_{k}\right\rangle=\left\langle m_{1}, \ldots, m_{j}\right\rangle$.

Numerical Monoids

Definition

A Numerical Monoid is an additive submonoid of \mathbb{N}_{0}.

Definition

The numerical monoid generated by n_{1}, \ldots, n_{k}, written $\left\langle n_{1}, \ldots, n_{k}\right\rangle$, is the set $\left\{x_{1} n_{1}+x_{2} n_{2}+\cdots+x_{k} n_{x} \mid x_{i} \in \mathbb{N}_{0}\right\}$. We say the monoid is primitive if $\operatorname{gcd}\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}=1$. This generating set is minimal if $k \leq j$ whenever $\left\langle n_{1}, \ldots, n_{k}\right\rangle=\left\langle m_{1}, \ldots, m_{j}\right\rangle$.

Every numerical monoid has a unique minimal generating set. This set is precisely the set of irreducibles of the monoid.

Factorization

Factorization

Definition

Let $x \in\left\langle n_{1}, n_{2}, \ldots, n_{k}\right\rangle$, and let $x_{1} n_{1}+x_{2} n_{2}+\cdots+x_{k} n_{k}$ be a factorization of x.

Factorization

Definition

Let $x \in\left\langle n_{1}, n_{2}, \ldots, n_{k}\right\rangle$, and let $x_{1} n_{1}+x_{2} n_{2}+\cdots+x_{k} n_{k}$ be a factorization of x. Then the length of this factorization, denoted

$$
L\left(x_{1} n_{1}+x_{2} n_{2}+\cdots+x_{k} n_{k}\right) \text {, is } x_{1}+x_{2}+\cdots+x_{k} \text {. }
$$

Factorization

Definition

Let $x \in\left\langle n_{1}, n_{2}, \ldots, n_{k}\right\rangle$, and let $x_{1} n_{1}+x_{2} n_{2}+\cdots+x_{k} n_{k}$ be a factorization of x. Then the length of this factorization, denoted

$$
L\left(x_{1} n_{1}+x_{2} n_{2}+\cdots+x_{k} n_{k}\right), \text { is } x_{1}+x_{2}+\cdots+x_{k} .
$$

The set of lengths of x, denoted $\mathcal{L}(x)$, is

$$
\begin{gathered}
\{L(z) \mid z \text { is a factorization of } x\} . \\
\mathcal{L}(x)=\left\{x_{1}+x_{2}+\cdots+x_{n} \mid x_{1} n_{1}+x_{2} n_{2}+\cdots+x_{k} n_{k}=x\right\} .
\end{gathered}
$$

The Delta Set

The Delta Set

Definition

The delta set of an element $x \in M$, denoted $\Delta(x)$, is the set of consecutive differences in $\mathcal{L}(x)$.

The Delta Set

Definition

The delta set of an element $x \in M$, denoted $\Delta(x)$, is the set of consecutive differences in $\mathcal{L}(x)$. That is, if

$$
\mathcal{L}(x)=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}
$$

then

$$
\Delta(x)=\left\{x_{i}-x_{i-1} \mid 1 \leq i \leq k\right\} .
$$

The Delta Set

Definition

The delta set of an element $x \in M$, denoted $\Delta(x)$, is the set of consecutive differences in $\mathcal{L}(x)$. That is, if

$$
\mathcal{L}(x)=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}
$$

then

$$
\Delta(x)=\left\{x_{i}-x_{i-1} \mid 1 \leq i \leq k\right\} .
$$

The delta set of M, denoted $\Delta(M)$, is

$$
\bigcup_{x \in M} \Delta(x)
$$

A Sample Delta Set

A Sample Delta Set

Let $M=\langle 5,7,12\rangle$ and $x=50$.

A Sample Delta Set

$$
\begin{align*}
& \text { Let } M=\langle 5,7,12\rangle \text { and } x=50 \text {. Then } \\
& \qquad 50=0 \cdot 5+2 \cdot 7+3 \cdot 12 \tag{5}
\end{align*}
$$

A Sample Delta Set

$$
\begin{align*}
& \text { Let } M=\langle 5,7,12\rangle \text { and } x=50 \text {. Then } \\
& \qquad \begin{aligned}
50 & =0 \cdot 5+2 \cdot 7+3 \cdot 12 \\
& =1 \cdot 5+3 \cdot 7+2 \cdot 12
\end{aligned} \tag{5}
\end{align*}
$$

A Sample Delta Set

$$
\begin{align*}
& \text { Let } M=\langle 5,7,12\rangle \text { and } x=50 \text {. Then } \\
& \qquad \begin{aligned}
50 & =0 \cdot 5+2 \cdot 7+3 \cdot 12 \\
& =1 \cdot 5+3 \cdot 7+2 \cdot 12 \\
& =2 \cdot 5+5) \\
& =3 \cdot 5+5) \\
& =10 \cdot 5+0 \cdot 7+0 \cdot 12
\end{aligned} \tag{5}\\
& \qquad \begin{aligned}
(8) \\
(8)
\end{aligned} \tag{7}
\end{align*}
$$

A Sample Delta Set

Let $M=\langle 5,7,12\rangle$ and $x=50$. Then

$$
\begin{align*}
50 & =0 \cdot 5+2 \cdot 7+3 \cdot 12 \tag{5}\\
& =1 \cdot 5+3 \cdot 7+2 \cdot 12 \tag{6}\\
& =2 \cdot 5+4) \tag{7}\\
& =3 \cdot 5+5 \cdot 7+1 \cdot 12 \tag{8}\\
& =10 \cdot 5+0 \cdot 7+0 \cdot 12
\end{align*}
$$

Thus $\mathcal{L}(x)=\{5,6,7,8,10\}$

A Sample Delta Set

Let $M=\langle 5,7,12\rangle$ and $x=50$. Then

$$
\begin{align*}
50 & =0 \cdot 5+2 \cdot 7+3 \cdot 12 \tag{5}\\
& =1 \cdot 5+3 \cdot 7+2 \cdot 12 \tag{6}\\
& =2 \cdot 5+6) \tag{7}\\
& =3 \cdot 5+5 \cdot 7+1 \cdot 12 \tag{8}\\
& =10 \cdot 5+0 \cdot 7+0 \cdot 12
\end{align*}
$$

Thus $\mathcal{L}(x)=\{5,6,7,8,10\}$ and $\Delta(x)=\{1,2\}$.

Properties

Properties

Theorem $\min \left(\Delta^{S}(M)\right)=\operatorname{gcd}\left(\Delta^{S}(M)\right)$.

Properties

Theorem
 $\min \left(\Delta^{S}(M)\right)=\operatorname{gcd}\left(\Delta^{S}(M)\right)$.

Theorem
$\min \left(\Delta\left(\left\langle n_{1}, n_{2}, \ldots, n_{k}\right\rangle\right)\right)=\operatorname{gcd}\left(\left\{n_{i}-n_{i-1} \mid 1 \leq i \leq k\right\}\right)$.

Properties

Theorem

$\min \left(\Delta^{S}(M)\right)=\operatorname{gcd}\left(\Delta^{S}(M)\right)$.
Theorem
$\min \left(\Delta\left(\left\langle n_{1}, n_{2}, \ldots, n_{k}\right\rangle\right)\right)=\operatorname{gcd}\left(\left\{n_{i}-n_{i-1} \mid 1 \leq i \leq k\right\}\right)$.

Theorem

$\Delta\left(\left\langle n_{1}, n_{2}\right\rangle\right)=\left\{n_{2}-n_{1}\right\}$.

Non-Minimal Bases

Non-Minimal Bases

> Definition
> Let $M=\left\langle m_{1}, m_{2}, \ldots, m_{l}\right\rangle$ and let $S=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ be a subset of M with $\left\{m_{1}, m_{2}, \ldots, m_{l}\right\} \subseteq S$. Then S is a non-minimal basis for M.

Non-Minimal Bases

> Definition
> Let $M=\left\langle m_{1}, m_{2}, \ldots, m_{l}\right\rangle$ and let $S=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ be a subset of M with $\left\{m_{1}, m_{2}, \ldots, m_{l}\right\} \subseteq S$. Then S is a non-minimal basis for M.

Instead of factoring elements into irreducibles, we can factor them with respect to an arbitrary basis.

Non-Minimal Bases

Definition

Let $M=\left\langle m_{1}, m_{2}, \ldots, m_{l}\right\rangle$ and let $S=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ be a subset of M with $\left\{m_{1}, m_{2}, \ldots, m_{l}\right\} \subseteq S$. Then S is a non-minimal basis for M.

Instead of factoring elements into irreducibles, we can factor them with respect to an arbitrary basis.

Definition

Let S be a basis set for M, and let $x \in M$. Then $\mathcal{L}^{S}(x)=\left\{x_{1}+x_{2}+\cdots+x_{k} \mid x_{1} n_{1}+x_{2} n_{2}+\cdots+x_{k} n_{k}=x\right\}$, and $\Delta^{S}(x)=\left\{L_{i}-L_{i-1} \mid \mathcal{L}^{S}(x)=\left\{L_{1}, L_{2}, \ldots, L_{k}\right\}, 2 \leq i \leq k\right\}$.

$$
\Delta^{S}(M)=\bigcup_{x \in M} \Delta^{S}(x)
$$

Elementary Results

Elementary Results

Theorem
 $\min \left(\Delta^{S}(M)\right)=\operatorname{gcd}\left(\Delta^{S}(M)\right)$.

Theorem

If $S=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$, then $\min \left(\Delta^{S}(M)\right)=\operatorname{gcd}\left(\left\{n_{i}-n_{i-1} \mid 2 \leq i \leq k\right\}\right)$.

- Recall that $\Delta\left(\left\langle n_{1}, n_{2}\right\rangle\right)=\left\{n_{2}-n_{1}\right\}$.
- Recall that $\Delta\left(\left\langle n_{1}, n_{2}\right\rangle\right)=\left\{n_{2}-n_{1}\right\}$.
- What happens when we introdue one additional generator?
$\left\langle n_{1}, n_{2}, n_{1}+n_{2}\right\rangle$

$\left\langle n_{1}, n_{2}, n_{1}+n_{2}\right\rangle$

- $\min \left(\Delta^{S}(M)\right)=1$.

$\left\langle n_{1}, n_{2}, n_{1}+n_{2}\right\rangle$

- $\min \left(\Delta^{S}(M)\right)=1$.
- $\max \left(\Delta^{S}(M)\right)=n_{2}-n_{1}$.

$\left\langle n_{1}, n_{2}, n_{1}+n_{2}\right\rangle$

- $\min \left(\Delta^{S}(M)\right)=1$.
- $\max \left(\Delta^{S}(M)\right)=n_{2}-n_{1}$.

Proposition

Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a primitive numerical monoid and let $S=\left\{n_{1}, n_{2}, n_{1}+n_{2}\right\}$. Then $\Delta^{S}(M)=\left\{1,2, \ldots, n_{2}-n_{1}\right\}$.

$\left\langle n_{1}, n_{2}, n_{1} n_{2}\right\rangle$

$\left\langle n_{1}, n_{2}, n_{1} n_{2}\right\rangle$

- If $M=\langle 5,6\rangle$ and $S=\{5,6,30\}, \Delta^{S}(M)=\{1,2,3,4\}$.

$\left\langle n_{1}, n_{2}, n_{1} n_{2}\right\rangle$

- If $M=\langle 5,6\rangle$ and $S=\{5,6,30\}, \Delta^{S}(M)=\{1,2,3,4\}$.
- If $M=\langle 5,11\rangle$ and $S=\{5,11,55\}, \Delta^{S}(M)=\{2,4,6\}$.

$\left\langle n_{1}, n_{2}, n_{1} n_{2}\right\rangle$

- If $M=\langle 5,6\rangle$ and $S=\{5,6,30\}, \Delta^{S}(M)=\{1,2,3,4\}$.
- If $M=\langle 5,11\rangle$ and $S=\{5,11,55\}, \Delta^{S}(M)=\{2,4,6\}$.
- If $M=\langle 12,29\rangle$ and $S=\{12,29,348\}$,
$\Delta^{S}(M)=\{1,2,3,4,5,6,11,17\}$.

$\left\langle n_{1}, n_{2}, n_{1} n_{2}\right\rangle$

- If $M=\langle 5,6\rangle$ and $S=\{5,6,30\}, \Delta^{S}(M)=\{1,2,3,4\}$.
- If $M=\langle 5,11\rangle$ and $S=\{5,11,55\}, \Delta^{S}(M)=\{2,4,6\}$.
- If $M=\langle 12,29\rangle$ and $S=\{12,29,348\}$,
$\Delta^{S}(M)=\{1,2,3,4,5,6,11,17\}$.

Lemma

For each $m \in M$, there exists $k \in \mathbb{N}_{0}$ such that $\Delta^{S}(m)=\Delta^{S}\left(k n_{1} n_{2}\right)$.

$\left\langle n_{1}, n_{2}, n_{1} n_{2}\right\rangle$

- If $M=\langle 5,6\rangle$ and $S=\{5,6,30\}, \Delta^{S}(M)=\{1,2,3,4\}$.
- If $M=\langle 5,11\rangle$ and $S=\{5,11,55\}, \Delta^{S}(M)=\{2,4,6\}$.
- If $M=\langle 12,29\rangle$ and $S=\{12,29,348\}$,
$\Delta^{S}(M)=\{1,2,3,4,5,6,11,17\}$.

Lemma

For each $m \in M$, there exists $k \in \mathbb{N}_{0}$ such that $\Delta^{S}(m)=\Delta^{S}\left(k n_{1} n_{2}\right)$.

Proposition

Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a primitive numerical monoid and let $S=\left\{n_{1}, n_{2}, n_{1} n_{2}\right\}$. Then $\Delta^{S}(M)=\Delta^{S}\left(\left(\frac{n_{2}-1}{\operatorname{gcd}\left(n_{1}-1, n_{2}-n_{1}\right)}\right) n_{1} n_{2}\right)$.

Some Less Nice Examples

Some Less Nice Examples

- If $M=\langle 3,8\rangle$ and $S=\{3,8,96\}$, $\Delta^{S}(M)=\{1,2,3,4,5,6,11\}$.

Some Less Nice Examples

- If $M=\{3,8\rangle$ and $S=\{3,8,96\}$,
$\Delta^{S}(M)=\{1,2,3,4,5,6,11\}$.
- If $M=\langle 6,11\rangle$ and $S=\{6,11,48\}, \Delta^{S}(M)=\{1,2,3,5,7\}$.

Some Less Nice Examples

- If $M=\{3,8\rangle$ and $S=\{3,8,96\}$, $\Delta^{S}(M)=\{1,2,3,4,5,6,11\}$.
- If $M=\langle 6,11\rangle$ and $S=\{6,11,48\}, \Delta^{S}(M)=\{1,2,3,5,7\}$.
- $\{1,2,3,5,8,13\}$.

Shrinking the Delta Set

We consider $M=\langle 2,7\rangle$.

Shrinking the Delta Set

We consider $M=\langle 2,7\rangle$.

- For $S=\{2,7\}, \Delta^{S}(M)=\{5\}$.

Shrinking the Delta Set

We consider $M=\langle 2,7\rangle$.

- For $S=\{2,7\}, \Delta^{S}(M)=\{5\}$.
- For $S=\{2,4,7\}, \Delta^{S}(M)=\{1,2\}$.

Shrinking the Delta Set

We consider $M=\langle 2,7\rangle$.

- For $S=\{2,7\}, \Delta^{S}(M)=\{5\}$.
- For $S=\{2,4,7\}, \Delta^{S}(M)=\{1,2\}$.
- For $S=\{2,4,6,7\}, \Delta^{S}(M)=\{1\}$.

Shrinking the Delta Set

We consider $M=\langle 2,7\rangle$.

- For $S=\{2,7\}, \Delta^{S}(M)=\{5\}$.
- For $S=\{2,4,7\}, \Delta^{S}(M)=\{1,2\}$.
- For $S=\{2,4,6,7\}, \Delta^{S}(M)=\{1\}$.

Theorem

Let M be a primitive numerical monoid, and $\left\{n_{1}, \ldots, n_{k}\right\}$ be any generating set for M.
For all $N \geq\left\lceil\frac{n_{k}}{n_{1}}\right\rceil n_{k}$, if we let $S=\{m \in M \mid m \leq N\}$, then $\Delta^{S}(M)=\{1\}$.

Growing the Delta Set

Growing the Delta Set

Returning to our example $M=\langle 2,7\rangle$, we see that if we let $S=\{2,7,100\}$, we get $\Delta^{S}(M)=\{1,2,3,4,5,9,14\}$.

Growing the Delta Set

Returning to our example $M=\langle 2,7\rangle$, we see that if we let $S=\{2,7,100\}$, we get $\Delta^{S}(M)=\{1,2,3,4,5,9,14\}$.

Theorem

For any numerical monoid M and all $n \in \mathbb{N}$, there is a finite generating set S such that $\left|\Delta^{S}(M)\right|>n$.

Kaplan's Theorem

Theorem

Let $M=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be a numerical monoid with $n_{1}<n_{2}<n_{3}$. Then $\max (\Delta(M))=\max \left(\Delta\left(k_{1} n_{1}\right) \cup \Delta\left(k_{3} n_{3}\right)\right)$, where $k_{1}=\min \left\{k \mid k n_{1} \in\left\langle n_{2}, n_{3}\right\rangle\right\}$ and $k_{3}=\min \left\{k \mid k n_{3} \in\left\langle n_{1}, n_{2}\right\rangle\right\}$.

Kaplan's Theorem

Theorem

Let $M=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be a numerical monoid with $n_{1}<n_{2}<n_{3}$. Then $\max (\Delta(M))=\max \left(\Delta\left(k_{1} n_{1}\right) \cup \Delta\left(k_{3} n_{3}\right)\right)$, where $k_{1}=\min \left\{k \mid k n_{1} \in\left\langle n_{2}, n_{3}\right\rangle\right\}$ and $k_{3}=\min \left\{k \mid k n_{3} \in\left\langle n_{1}, n_{2}\right\rangle\right\}$.

Corollary

Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a numerical monoid, and let $S=\left\{n_{1}, n_{2}, i n_{1}+j n_{2}\right\}$.

Kaplan's Theorem

Theorem

Let $M=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be a numerical monoid with $n_{1}<n_{2}<n_{3}$. Then $\max (\Delta(M))=\max \left(\Delta\left(k_{1} n_{1}\right) \cup \Delta\left(k_{3} n_{3}\right)\right)$, where $k_{1}=\min \left\{k \mid k n_{1} \in\left\langle n_{2}, n_{3}\right\rangle\right\}$ and $k_{3}=\min \left\{k \mid k n_{3} \in\left\langle n_{1}, n_{2}\right\rangle\right\}$.

Corollary

Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a numerical monoid, and let
$S=\left\{n_{1}, n_{2}, i n_{1}+j n_{2}\right\}$.Then
(1) If $j \neq 0 \max \left(\Delta^{S}(H)\right)=\max \left\{n_{2}-n_{1}, i+j-1\right\}$.
(2) If $j=0$ and $n_{2}<s, \max \left(\Delta^{S}(H)\right)=i-1$.
(3) If $j=0$ and $s<n_{2}$,
$\max \left(\Delta^{S}(H)\right)=\max \left\{i-1,\left[n_{2} / i\right]+\left\lfloor n_{2} / i\right\rfloor-n_{1}\right\}$.

How Little Can They Change?

How Little Can They Change?

Lemma

Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a primitive numerical monoid and $S=\left\{n_{1}, n_{2}, i n_{1}+j n_{2}\right\}$ with $i<n_{2}$. Then $i+j-1 \in \Delta^{S}(M)$.

How Little Can They Change?

Lemma

Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a primitive numerical monoid and $S=\left\{n_{1}, n_{2}, i n_{1}+j n_{2}\right\}$ with $i<n_{2}$. Then $i+j-1 \in \Delta^{S}(M)$.

Theorem

Let M and S be as above. Then $\Delta(M)=\Delta^{S}(M)$ if and only if $i+j-1=n_{2}-n_{1}$.

How Little Can They Change?

Lemma

Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a primitive numerical monoid and $S=\left\{n_{1}, n_{2}, i n_{1}+j n_{2}\right\}$ with $i<n_{2}$. Then $i+j-1 \in \Delta^{S}(M)$.

Theorem

Let M and S be as above. Then $\Delta(M)=\Delta^{S}(M)$ if and only if $i+j-1=n_{2}-n_{1}$.

Theorem

Let M and S be as above. Then $\left|\Delta^{S}(M)\right|=1$ if and only if one of the following two conditions hold:
(1) $i+j-1=n_{2}-n_{1}$.
(2) $j=0$ and $I(i+j-1)=n_{2}-n_{1}$ such that $I \leq\left\lceil n_{2} / i\right\rceil$.

Intervals as Delta Sets

Intervals as Delta Sets

Proposition

Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a primitive monoid, and let $S=\left\{n_{1}, n_{2}, i n_{1}+j n_{2}\right\}$. Suppose $i+j=2$. Then $\Delta^{S}(M)=[1, k]$ for some k.

Intervals as Delta Sets

Proposition

Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a primitive monoid, and let $S=\left\{n_{1}, n_{2}, i n_{1}+j n_{2}\right\}$. Suppose $i+j=2$. Then $\Delta^{S}(M)=[1, k]$ for some k.

Theorem

Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a primitive monoid and let $i, j \in \mathbb{N}_{0}$ such that $i+j-1=k\left(n_{2}-n_{1}\right)=k \alpha$ for some $k>0$. Then if
$S=\left\{n_{1}, n_{2}, i n_{1}+j n_{2}\right\}, \Delta^{S}(M)=\{\alpha, 2 \alpha, \ldots, k \alpha\}$.

$\Delta^{S}(M)\{1, k\}$

$\Delta^{S}(M)\{1, k\}$

- Sampling suggests that 'most' delta sets are nice.

$\Delta^{S}(M)\{1, k\}$

- Sampling suggests that 'most' delta sets are nice.
- Hard to prove a set isn't a delta set.

$\Delta^{S}(M)\{1, k\}$

- Sampling suggests that 'most' delta sets are nice.
- Hard to prove a set isn't a delta set.

Theorem

Let n_{1}, n_{2} be positive relatively prime integers, and let $M=\left\langle n_{1}, n_{2}\right\rangle$. Let $i, j \in \mathbb{N}_{0}$, and let $S=\left\{n_{1}, n_{2}, i n_{1}+j n_{2}\right\}$. Then if $\Delta^{S}(M)=\{1, k\}, k=2$.

Thank You

I'd like to thank

Thank You

I'd like to thank
 - The NSF.

Thank You

I'd like to thank

- The NSF.
- Trinity University.

Thank You

I'd like to thank

- The NSF.
- Trinity University.
- Scott Chapman.

Thank You

I'd like to thank

- The NSF.
- Trinity University.
- Scott Chapman.
- Rolf Hoyer and Nathan Kaplan.

