Non-Minimal Factorization in Numerical Monoids

Jay Daigle gerald.daigle@pomona.edu Pomona College

August 20, 2007

Definitions

One Extra Generator

Definition

A monoid is a set M with a binary associative operation * and an identity element, 1. That is, for all $a, b \in M$, we have

- $\mathbf{0}$ $a * b \in M$
- 2 a*(b*c) = (a*b)*c
- 1*a = a*1 = 1.

Definition

A monoid is a set M with a binary associative operation * and an identity element, 1. That is, for all $a, b \in M$, we have

- $\mathbf{0}$ $a * b \in M$
- 2 a*(b*c) = (a*b)*c
- 1*a = a*1 = 1.

A group without inverses.

Definition

A monoid is a set M with a binary associative operation * and an identity element, 1. That is, for all $a, b \in M$, we have

- $\mathbf{0}$ $a * b \in M$
- 2 a*(b*c) = (a*b)*c
- 1*a = a*1 = 1.

A group without inverses.

Multiplicative: \mathbb{N} , $\{1 + 4k \mid k \in \mathbb{N}_0\}$.

Definition

A monoid is a set M with a binary associative operation * and an identity element, 1. That is, for all $a, b \in M$, we have

- $\mathbf{0} \quad a * b \in M$
- ② a*(b*c) = (a*b)*c
- **3** 1*a = a*1 = 1.

A group without inverses.

Multiplicative: \mathbb{N} , $\{1+4k \mid k \in \mathbb{N}_0\}$.

Additive: $\mathbb{M}_{n \times m}$. \mathbb{N}_0 .

Definition

A Numerical Monoid is an additive submonoid of \mathbb{N}_0 .

Definition

A Numerical Monoid is an additive submonoid of \mathbb{N}_0 .

Definition

The numerical monoid generated by n_1, \ldots, n_k , written $\langle n_1, \ldots, n_k \rangle$, is the set $\{x_1 n_1 + x_2 n_2 + \cdots + x_k n_k \mid x_i \in \mathbb{N}_0\}$.

Definition

A Numerical Monoid is an additive submonoid of \mathbb{N}_0 .

Definition

The numerical monoid generated by n_1, \ldots, n_k , written $\langle n_1, \ldots, n_k \rangle$, is the set $\{x_1 n_1 + x_2 n_2 + \cdots + x_k n_k \mid x_i \in \mathbb{N}_0\}$. We say the monoid is primitive if $\gcd\{n_1, n_2, \ldots, n_k\} = 1$.

Definition

A Numerical Monoid is an additive submonoid of \mathbb{N}_0 .

Definition

The numerical monoid generated by n_1, \ldots, n_k , written $\langle n_1, \ldots, n_k \rangle$, is the set $\{x_1 n_1 + x_2 n_2 + \cdots + x_k n_k \mid x_i \in \mathbb{N}_0\}$. We say the monoid is primitive if $\gcd\{n_1, n_2, \ldots, n_k\} = 1$. This generating set is minimal if $k \leq j$ whenever $\langle n_1, \ldots, n_k \rangle = \langle m_1, \ldots, m_j \rangle$.

Definition

A Numerical Monoid is an additive submonoid of \mathbb{N}_0 .

Definition

The numerical monoid generated by n_1, \ldots, n_k , written $\langle n_1, \ldots, n_k \rangle$, is the set $\{x_1 n_1 + x_2 n_2 + \cdots + x_k n_k \mid x_i \in \mathbb{N}_0\}$. We say the monoid is primitive if $\gcd\{n_1, n_2, \ldots, n_k\} = 1$. This generating set is minimal if $k \leq j$ whenever $\langle n_1, \ldots, n_k \rangle = \langle m_1, \ldots, m_j \rangle$.

Every numerical monoid has a unique minimal generating set. This set is precisely the set of irreducibles of the monoid.

Factorization

Definition

Let $x \in \langle n_1, n_2, \dots, n_k \rangle$, and let $x_1 n_1 + x_2 n_2 + \dots + x_k n_k$ be a factorization of x.

Factorization

Definition

Let $x \in \langle n_1, n_2, \dots, n_k \rangle$, and let $x_1 n_1 + x_2 n_2 + \dots + x_k n_k$ be a factorization of x. Then the length of this factorization, denoted

$$L(x_1n_1 + x_2n_2 + \cdots + x_kn_k)$$
, is $x_1 + x_2 + \cdots + x_k$.

Factorization

Definition

Let $x \in \langle n_1, n_2, \dots, n_k \rangle$, and let $x_1 n_1 + x_2 n_2 + \dots + x_k n_k$ be a factorization of x. Then the length of this factorization, denoted

$$L(x_1n_1 + x_2n_2 + \cdots + x_kn_k)$$
, is $x_1 + x_2 + \cdots + x_k$.

The set of lengths of x, denoted $\mathcal{L}(x)$, is

$$\{L(z) \mid z \text{ is a factorization of } x\}.$$

$$\mathcal{L}(x) = \{x_1 + x_2 + \dots + x_n \mid x_1 n_1 + x_2 n_2 + \dots + x_k n_k = x\}.$$

Definitions

Definition

The delta set of an element $x \in M$, denoted $\Delta(x)$, is the set of consecutive differences in $\mathcal{L}(x)$.

Definition

The delta set of an element $x \in M$, denoted $\Delta(x)$, is the set of consecutive differences in $\mathcal{L}(x)$. That is, if

$$\mathcal{L}(x) = \{x_0, x_1, \dots, x_k\}$$

then

$$\Delta(x) = \{x_i - x_{i-1} \mid 1 \le i \le k\}.$$

Definition

The delta set of an element $x \in M$, denoted $\Delta(x)$, is the set of consecutive differences in $\mathcal{L}(x)$. That is, if

$$\mathcal{L}(x) = \{x_0, x_1, \dots, x_k\}$$

then

$$\Delta(x) = \{x_i - x_{i-1} \mid 1 \le i \le k\}.$$

The delta set of M, denoted $\Delta(M)$, is

$$\bigcup_{x\in M}\Delta(x).$$

A Sample Delta Set

Let
$$M = (5, 7, 12)$$
 and $x = 50$.

Let
$$M=\langle 5,7,12\rangle$$
 and $x=50$. Then
$$50 = 0\cdot 5 + 2\cdot 7 + 3\cdot 12$$

Let
$$M = \langle 5, 7, 12 \rangle$$
 and $x = 50$. Then

$$50 = 0.5 + 2.7 + 3.12 (5)$$

= $1.5 + 3.7 + 2.12 (6)$

A Sample Delta Set

Let
$$M = \langle 5, 7, 12 \rangle$$
 and $x = 50$. Then

$$50 = 0.5 + 2.7 + 3.12 (5)$$

$$= 1.5 + 3.7 + 2.12 (6)$$

$$= 2.5 + 4.7 + 1.12 (7)$$

$$= 3.5 + 5.7 + 0.12 (8)$$

$$= 10.5 + 0.7 + 0.12 (10)$$

Let
$$M = \langle 5, 7, 12 \rangle$$
 and $x = 50$. Then

$$50 = 0.5 + 2.7 + 3.12 (5)$$

$$= 1.5 + 3.7 + 2.12 (6)$$

$$= 2.5 + 4.7 + 1.12 (7)$$

$$= 3.5 + 5.7 + 0.12 (8)$$

$$= 10.5 + 0.7 + 0.12 (10)$$

Thus
$$\mathcal{L}(x) = \{5, 6, 7, 8, 10\}$$

A Sample Delta Set

Let
$$M = \langle 5, 7, 12 \rangle$$
 and $x = 50$. Then

$$50 = 0.5 + 2.7 + 3.12 (5)$$

$$= 1.5 + 3.7 + 2.12 (6)$$

$$= 2.5 + 4.7 + 1.12 (7)$$

$$= 3.5 + 5.7 + 0.12 (8)$$

$$= 10.5 + 0.7 + 0.12 (10)$$

Thus
$$\mathcal{L}(x) = \{5, 6, 7, 8, 10\}$$
 and $\Delta(x) = \{1, 2\}$.

Properties

Properties

Theorem

$$\min(\Delta^S(M)) = \gcd(\Delta^S(M)).$$

Theorem

$$\min(\Delta^{\mathcal{S}}(M)) = \gcd(\Delta^{\mathcal{S}}(M)).$$

Theorem

$$\min(\Delta(\langle n_1, n_2, \ldots, n_k \rangle)) = \gcd(\{n_i - n_{i-1} \mid 1 \le i \le k\}).$$

Properties

Theorem

$$\min(\Delta^{\mathcal{S}}(M)) = \gcd(\Delta^{\mathcal{S}}(M)).$$

Theorem

$$\min(\Delta(\langle n_1, n_2, \ldots, n_k \rangle)) = \gcd(\{n_i - n_{i-1} \mid 1 \leq i \leq k\}).$$

Theorem

$$\Delta(\langle n_1, n_2 \rangle) = \{n_2 - n_1\}.$$

Definition

Let $M = \langle m_1, m_2, \dots, m_l \rangle$ and let $S = \{n_1, n_2, \dots, n_k\}$ be a subset of M with $\{m_1, m_2, \dots, m_l\} \subseteq S$. Then S is a non-minimal basis for M.

Definition

Let $M = \langle m_1, m_2, \dots, m_l \rangle$ and let $S = \{n_1, n_2, \dots, n_k\}$ be a subset of M with $\{m_1, m_2, \dots, m_l\} \subseteq S$. Then S is a non-minimal basis for M.

Instead of factoring elements into irreducibles, we can factor them with respect to an arbitrary basis.

Definition

Let $M = \langle m_1, m_2, \dots, m_l \rangle$ and let $S = \{n_1, n_2, \dots, n_k\}$ be a subset of M with $\{m_1, m_2, \dots, m_l\} \subseteq S$. Then S is a non-minimal basis for M.

Instead of factoring elements into irreducibles, we can factor them with respect to an arbitrary basis.

Definition

Let S be a basis set for M, and let $x \in M$. Then $\mathcal{L}^{S}(x) = \{x_1 + x_2 + \dots + x_k \mid x_1 n_1 + x_2 n_2 + \dots + x_k n_k = x\}$, and $\Delta^{S}(x) = \{L_i - L_{i-1} \mid \mathcal{L}^{S}(x) = \{L_1, L_2, \dots, L_k\}, 2 \le i \le k\}$.

$$\Delta^{S}(M) = \bigcup_{x \in M} \Delta^{S}(x).$$

Elementary Results

Definitions

Elementary Results

Theorem

$$\min(\Delta^{\mathcal{S}}(M)) = \gcd(\Delta^{\mathcal{S}}(M)).$$

Theorem

If
$$S = \{n_1, n_2, \dots, n_k\}$$
, then $\min(\Delta^S(M)) = \gcd(\{n_i - n_{i-1} \mid 2 \le i \le k\})$.

• Recall that $\Delta(\langle n_1, n_2 \rangle) = \{n_2 - n_1\}.$

- Recall that $\Delta(\langle n_1, n_2 \rangle) = \{n_2 n_1\}.$
- What happens when we introdue one additional generator?

 $\langle n_1, n_2, n_1 + n_2 \rangle$

$$\langle n_1, n_2, n_1 + n_2 \rangle$$

•
$$\min(\Delta^{S}(M)) = 1$$
.

$$\langle n_1, n_2, n_1 + n_2 \rangle$$

- $min(\Delta^S(M)) = 1$.
- $\max(\Delta^S(M)) = n_2 n_1$.

$$\langle n_1, n_2, n_1 + n_2 \rangle$$

- $min(\Delta^S(M)) = 1$.
- $\max(\Delta^{S}(M)) = n_2 n_1$.

Proposition

Let $M = \langle n_1, n_2 \rangle$ be a primitive numerical monoid and let $S = \{n_1, n_2, n_1 + n_2\}$. Then $\Delta^S(M) = \{1, 2, \dots, n_2 - n_1\}$.

Definitions

• If
$$M = \langle 5, 6 \rangle$$
 and $S = \{5, 6, 30\}$, $\Delta^{S}(M) = \{1, 2, 3, 4\}$.

$\langle n_1, n_2, n_1 n_2 \rangle$

• If $M = \langle 5, 6 \rangle$ and $S = \{5, 6, 30\}$, $\Delta^{S}(M) = \{1, 2, 3, 4\}$.

Many Extra Generators

• If $M = \langle 5, 11 \rangle$ and $S = \{5, 11, 55\}$, $\Delta^{S}(M) = \{2, 4, 6\}$.

• If $M = \langle 5, 6 \rangle$ and $S = \{5, 6, 30\}, \Delta^{S}(M) = \{1, 2, 3, 4\}.$

- If $M = \langle 5, 11 \rangle$ and $S = \{5, 11, 55\}, \Delta^{S}(M) = \{2, 4, 6\}.$
- If $M = \langle 12, 29 \rangle$ and $S = \{12, 29, 348\}$, $\Delta^{S}(M) = \{1, 2, 3, 4, 5, 6, 11, 17\}.$

$\langle n_1, n_2, n_1 n_2 \rangle$

• If $M = \langle 5, 6 \rangle$ and $S = \{5, 6, 30\}, \Delta^{S}(M) = \{1, 2, 3, 4\}.$

Many Extra Generators

- If $M = \langle 5, 11 \rangle$ and $S = \{5, 11, 55\}, \Delta^{S}(M) = \{2, 4, 6\}.$
- If $M = \langle 12, 29 \rangle$ and $S = \{12, 29, 348\}$, $\Delta^{S}(M) = \{1, 2, 3, 4, 5, 6, 11, 17\}.$

Lemma

For each $m \in M$, there exists $k \in \mathbb{N}_0$ such that $\Delta^{S}(m) = \Delta^{S}(kn_1n_2).$

$\langle n_1, n_2, n_1 n_2 \rangle$

- If $M = \langle 5, 6 \rangle$ and $S = \{5, 6, 30\}$, $\Delta^{S}(M) = \{1, 2, 3, 4\}$.
- If $M = \langle 5, 11 \rangle$ and $S = \{5, 11, 55\}$, $\Delta^S(M) = \{2, 4, 6\}$.
- If $M = \langle 12, 29 \rangle$ and $S = \{12, 29, 348\}$, $\Delta^S(M) = \{1, 2, 3, 4, 5, 6, 11, 17\}$.

Lemma

For each $m \in M$, there exists $k \in \mathbb{N}_0$ such that $\Delta^S(m) = \Delta^S(kn_1n_2)$.

Proposition

Let $M = \langle n_1, n_2 \rangle$ be a primitive numerical monoid and let $S = \{n_1, n_2, n_1 n_2\}$. Then $\Delta^S(M) = \Delta^S\left(\left(\frac{n_2 - 1}{\gcd(n_1 - 1, n_2 - n_1)}\right) n_1 n_2\right)$.

• If
$$M = \langle 3, 8 \rangle$$
 and $S = \{3, 8, 96\}$, $\Delta^{S}(M) = \{1, 2, 3, 4, 5, 6, 11\}$.

- If $M = \langle 3, 8 \rangle$ and $S = \{3, 8, 96\}$, $\Delta^{S}(M) = \{1, 2, 3, 4, 5, 6, 11\}.$
- If $M = \langle 6, 11 \rangle$ and $S = \{6, 11, 48\}, \Delta^{S}(M) = \{1, 2, 3, 5, 7\}.$

- If $M = \langle 3, 8 \rangle$ and $S = \{3, 8, 96\}$, $\Delta^{S}(M) = \{1, 2, 3, 4, 5, 6, 11\}.$
- If $M = \langle 6, 11 \rangle$ and $S = \{6, 11, 48\}, \Delta^{S}(M) = \{1, 2, 3, 5, 7\}.$

Many Extra Generators

• {1, 2, 3, 5, 8, 13}.

We consider $M = \langle 2, 7 \rangle$.

We consider $M = \langle 2, 7 \rangle$.

• For
$$S = \{2, 7\}, \Delta^S(M) = \{5\}.$$

We consider $M = \langle 2, 7 \rangle$.

- For $S = \{2, 7\}, \Delta^{S}(M) = \{5\}.$
- For $S = \{2, 4, 7\}, \Delta^{S}(M) = \{1, 2\}.$

We consider $M = \langle 2, 7 \rangle$.

- For $S = \{2, 7\}, \Delta^{S}(M) = \{5\}.$
- For $S = \{2, 4, 7\}, \Delta^{S}(M) = \{1, 2\}.$
- For $S = \{2, 4, 6, 7\}, \Delta^{S}(M) = \{1\}.$

We consider $M = \langle 2, 7 \rangle$.

- For $S = \{2,7\}, \Delta^S(M) = \{5\}.$
- For $S = \{2, 4, 7\}, \Delta^{S}(M) = \{1, 2\}.$
- For $S = \{2, 4, 6, 7\}, \Delta^{S}(M) = \{1\}.$

$\mathsf{Theorem}$

Let M be a primitive numerical monoid, and $\{n_1, \ldots, n_k\}$ be any generating set for M.

For all
$$N \ge \left\lceil \frac{n_k}{n_1} \right\rceil n_k$$
, if we let $S = \{m \in M \mid m \le N\}$, then $\Delta^S(M) = \{1\}$.

Growing the Delta Set

Many Extra Generators

Growing the Delta Set

Returning to our example $M=\langle 2,7\rangle$, we see that if we let $S=\{2,7,100\}$, we get $\Delta^S(M)=\{1,2,3,4,5,9,14\}$.

Growing the Delta Set

Returning to our example $M = \langle 2, 7 \rangle$, we see that if we let $S = \{2, 7, 100\}$, we get $\Delta^{S}(M) = \{1, 2, 3, 4, 5, 9, 14\}$.

$\mathsf{Theorem}$

For any numerical monoid M and all $n \in \mathbb{N}$, there is a finite generating set S such that $|\Delta^{S}(M)| > n$.

Kaplan's Theorem

Theorem

Let $M = \langle n_1, n_2, n_3 \rangle$ be a numerical monoid with $n_1 < n_2 < n_3$. Then $\max(\Delta(M)) = \max(\Delta(k_1 n_1) \cup \Delta(k_3 n_3))$, where $k_1 = \min\{k \mid kn_1 \in \langle n_2, n_3 \rangle\} \text{ and } k_3 = \min\{k \mid kn_3 \in \langle n_1, n_2 \rangle\}.$

Kaplan's Theorem

$\mathsf{Theorem}$

Let $M = \langle n_1, n_2, n_3 \rangle$ be a numerical monoid with $n_1 < n_2 < n_3$. Then $\max(\Delta(M)) = \max(\Delta(k_1 n_1) \cup \Delta(k_3 n_3))$, where $k_1 = \min\{k \mid kn_1 \in \langle n_2, n_3 \rangle\} \text{ and } k_3 = \min\{k \mid kn_3 \in \langle n_1, n_2 \rangle\}.$

Corollary

Let $M = \langle n_1, n_2 \rangle$ be a numerical monoid, and let $S = \{n_1, n_2, in_1 + in_2\}.$

Kaplan's Theorem

$\mathsf{Theorem}$

Let $M = \langle n_1, n_2, n_3 \rangle$ be a numerical monoid with $n_1 < n_2 < n_3$. Then $\max(\Delta(M)) = \max(\Delta(k_1 n_1) \cup \Delta(k_3 n_3))$, where $k_1 = \min\{k \mid kn_1 \in \langle n_2, n_3 \rangle\} \text{ and } k_3 = \min\{k \mid kn_3 \in \langle n_1, n_2 \rangle\}.$

Corollary

Let $M = \langle n_1, n_2 \rangle$ be a numerical monoid, and let $S = \{n_1, n_2, in_1 + jn_2\}$. Then

- If $j \neq 0 \max(\Delta^{S}(H)) = \max\{n_2 n_1, i + j 1\}$.
- ② If i = 0 and $n_2 < s$, $\max(\Delta^S(H)) = i 1$.
- **3** If j = 0 and $s < n_2$, $\max(\Delta^{S}(H)) = \max\{i-1, \lceil n_2/i \rceil + \lceil n_2/i \rceil - n_1\}.$

How Little Can They Change?

How Little Can They Change?

Lemma

Let $M = \langle n_1, n_2 \rangle$ be a primitive numerical monoid and $S = \{n_1, n_2, in_1 + jn_2\}$ with $i < n_2$. Then $i + j - 1 \in \Delta^S(M)$.

Lemma

Let $M = \langle n_1, n_2 \rangle$ be a primitive numerical monoid and $S = \{n_1, n_2, in_1 + jn_2\}$ with $i < n_2$. Then $i + j - 1 \in \Delta^S(M)$.

Theorem

Let M and S be as above. Then $\Delta(M) = \Delta^S(M)$ if and only if $i + j - 1 = n_2 - n_1$.

How Little Can They Change?

Lemma

Let $M = \langle n_1, n_2 \rangle$ be a primitive numerical monoid and $S = \{n_1, n_2, in_1 + jn_2\}$ with $i < n_2$. Then $i + j - 1 \in \Delta^S(M)$.

Theorem

Let M and S be as above. Then $\Delta(M) = \Delta^S(M)$ if and only if $i + j - 1 = n_2 - n_1$.

Theorem

Let M and S be as above. Then $|\Delta^S(M)| = 1$ if and only if one of the following two conditions hold:

- $i + i 1 = n_2 n_1$.
- **2** j = 0 and $l(i + j 1) = n_2 n_1$ such that $l \le \lceil n_2/i \rceil$.

Intervals as Delta Sets

Intervals as Delta Sets

Proposition

Let $M = \langle n_1, n_2 \rangle$ be a primitive monoid, and let $S = \{n_1, n_2, in_1 + in_2\}$. Suppose i + j = 2. Then $\Delta^S(M) = [1, k]$ for some k.

Intervals as Delta Sets

Proposition

Let $M = \langle n_1, n_2 \rangle$ be a primitive monoid, and let $S = \{n_1, n_2, in_1 + jn_2\}$. Suppose i + j = 2. Then $\Delta^S(M) = [1, k]$ for some k.

Theorem

Let $M = \langle n_1, n_2 \rangle$ be a primitive monoid and let $i, j \in \mathbb{N}_0$ such that $i + j - 1 = k(n_2 - n_1) = k\alpha$ for some k > 0. Then if $S = \{n_1, n_2, in_1 + jn_2\}, \ \Delta^S(M) = \{\alpha, 2\alpha, \dots, k\alpha\}.$

 $\Delta^{S}(M)\{1,k\}$

• Sampling suggests that 'most' delta sets are nice.

$\Delta^{S}(M)\{1,k\}$

- Sampling suggests that 'most' delta sets are nice.
- Hard to prove a set isn't a delta set.

$\Delta^{S}(M)\{1,k\}$

- Sampling suggests that 'most' delta sets are nice.
- Hard to prove a set isn't a delta set.

$\mathsf{Theorem}$

Let n_1 , n_2 be positive relatively prime integers, and let $M = \langle n_1, n_2 \rangle$. Let $i, j \in \mathbb{N}_0$, and let $S = \{n_1, n_2, in_1 + jn_2\}$. Then if $\Delta^S(M) = \{1, k\}, k = 2$.

I'd like to thank

• The NSF.

- The NSF.
- Trinity University.

- The NSF.
- Trinity University.
- Scott Chapman.

- The NSF.
- Trinity University.
- Scott Chapman.
- Rolf Hoyer and Nathan Kaplan.

Many Extra Generators