An Introduction to Special Values of L-Functions

Jay Daigle
jdaigle@caltech.edu
http://jaydaigle.net

California Institute of Technology
May 30, 2014

Caltech

Finding Prime Numbers

Prime numbers

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
\hline 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
\hline 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 \\
\hline 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 \\
\hline 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 \\
\hline 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 \\
\hline 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\
\hline 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 \\
\hline 101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 \\
\hline 111 & 112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 \\
\hline
\end{array}
$$

Figure: Sieve of Eratosthenes

Sebastian Koppehel / CC-BY-SA-3.0

Counting prime numbers between 10 and 100

■ Every composite in $[10,100]$ is divisible by a prime $p \leq 10$.
$\square\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right)=\frac{1 \cdot 2 \cdot 4 \cdot 6}{2 \cdot 3 \cdot 5 \cdot 7}=\frac{8}{35} \approx .23$
$\square .23 \cdot 90 \approx 21$. Primes between 10 and 100:

$$
\begin{array}{r}
11,13,17,19,23,29,31, \\
37,41,43,47,53,59,61, \\
67,71,73,79,83,89,97
\end{array}
$$

There are twenty-one!

Prime Number Theorem

Let $\pi(x)$ be the number of prime numbers less than or equal to x. Then

$$
\lim _{x \rightarrow+\infty} \frac{\pi(x) \ln (x)}{x}=1
$$

Counting prime numbers

$$
\begin{gathered}
\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right)\left(1-\frac{1}{7}\right) \ldots=\prod_{p \text { prime }}\left(1-\frac{1}{p}\right) \\
\left(1-\frac{1}{p}\right)^{-1}=1+\frac{1}{p}+\frac{1}{2 p}+\ldots \\
\prod_{p \text { prime }}\left(1-\frac{1}{p}\right)^{-1}=\prod_{p \text { prime }}\left(1+\frac{1}{p}+\frac{1}{2 p}+\ldots\right)=\sum_{n \geq 1} \frac{1}{n}
\end{gathered}
$$

This is the harmonic series, which doesn't converge (and order matters!).

The Riemann zeta series

■ Idea (from calculus): We can look at behavior of functions near bad points.

Definition

The Riemann zeta function is the function of one complex variable

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1}=\prod_{p \text { prime }} \frac{1}{1-p^{-s}}
$$

- Converges absolutely for $\operatorname{Re}(s)>1$.
- Want to study behavior near $s=1$.

Meromorphic continuations

Definition: Meromorphic Continuation

- A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is meromorphic if it can be represented as the ratio of two power series:

$$
f(z)=\frac{\sum_{n \geq 0} a_{n}\left(z-z_{0}\right)^{n}}{\sum_{n \geq 0} b_{n}\left(z-z_{0}\right)^{n}}
$$

■ If $g: U \rightarrow \mathbb{C}$ is a meromorphic function, and $f: \mathbb{C} \rightarrow \mathbb{C}$ is a meromorphic function with $f(u)=g(u)$ for all $u \in U$, we say f is the (unique!) meromorphic continuation of g.

The functional equation and the Riemann zeta function

We observe:

The functional equation

$$
\zeta(s)=2^{s} \pi^{s-1} \sin (\pi s / 2)\left(\int_{0}^{+\infty} x^{-s} e^{-x} d x\right) \zeta(1-s)
$$

Theorem

- The Riemann zeta series has a meromorphic contiuation to the complex plane, with a single pole at $s=1$.
$\square \lim _{s \rightarrow 1}(s-1) \zeta(s)=1$.

The Riemann Zeta Function

Figure : Values in black are close to 0 Hue gives the complex argument, with red being totally real

Special Values of the Riemann Zeta Function

- The prime number theorem is true if and only if $\zeta(s) \neq 0$ for all $\operatorname{Re}(s)=1$.
- $\zeta(-n)=-\frac{B_{n+1}}{n+1}$.
$\square \zeta(-2 n)=0$ for every $n \in \mathbb{N}$ ("trivial zeros").

Fun fact

$$
-\frac{1}{12}=\zeta(-1)=\sum_{n \geq 0} \frac{1}{n^{-1}}=1+2+3+4+\ldots
$$

Zeroes of the Riemann Zeta Function

Zeroes of ζ control how far primes are from where we "expect" them.

Riemann zeros control:

- The error term in the prime number theorem.
- The growth of the Möbius function and other counting functions.
- The size of prime gaps.

The Riemann Hypothesis

What do we know?

- If $\zeta(s)=0$ then either $s=-2 n$, or $0<\operatorname{Re}(s)<1$ ("critical strip").

■ Zeroes are symmetric about the "critical line" $\operatorname{Re}(s)=\frac{1}{2}$.

- The function $\zeta\left(\frac{1}{2}+i t\right)$ is zero for infinitely many $t \in \mathbb{R}$ (Hardy 1914).

Riemann Hypothesis (Riemann 1859)

If $\zeta(s)=0$ then either $s=-2 n$, or s is on the critical line $\operatorname{Re}(s)=\frac{1}{2}$.

Fermat's "Last Theorem"

Theorem (Wiles 1994)

Suppose $x^{n}+y^{n}=z^{n}$ for integers x, y, z. Then $n \leq 2, x=0$ or $y=0$.

Cauchy, Lamé 1847

$\square z^{n}=x^{n}+y^{n}=(x+y)\left(x+\zeta_{n} y\right)\left(x+\zeta_{n}^{2} y\right) \ldots\left(x+\zeta_{n}^{n-1} y\right)$

- These products are all relatively prime and divide z^{n}, and so by unique factorization are all nth powers.
■ "Infinite descent": use this solution to generate a smaller solution.

Kummer 1844

$\left(1+\zeta_{23}^{2}+\zeta_{23}^{4}+\zeta_{23}^{5}+\zeta_{23}^{6}+\zeta_{23}^{10}+\zeta_{23}^{11}\right)\left(1+\zeta_{23}+\zeta_{23}^{5}+\zeta_{23}^{6}+\zeta_{23}^{7}+\zeta_{23}^{9}+\zeta_{23}^{11}\right)$ $=2\left(\zeta_{23}^{5}+\zeta_{23}^{7}+\zeta_{23}^{9}+\zeta_{23}^{10}+3 \zeta_{23}^{11}+\zeta_{23}^{12}+\zeta_{23}^{13}+\zeta_{23}^{15}+\zeta_{23}^{16}+\zeta_{23}^{17}\right)$

Fields and Field Extensions

■ A field: you can do addition, multiplication, and division.
$\square \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / p \mathbb{Z}, \mathbb{Q}_{p}, \mathbb{Q}(t)$.

Definition

- If F and K are fields with $F \subset K$ then K is a field extension of F.

■ K is a vector field over F and we write $[K: F]=\operatorname{dim}_{F}(K)$ for the degree of the extension.
\square A number field is a finite extension of \mathbb{Q}. All number fields embed into \mathbb{C}.
$\square \mathbb{C}=\mathbb{R}(i)$.
$\square \mathbb{Q}(i), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{2}, i)$
$\square \mathbb{Q}\left(e^{2 \pi i / n}\right)=\mathbb{Q}\left(\zeta_{n}\right)$
$\square \mathbb{Q}(\sqrt{D}: D \in \mathbb{Z})$

Algebraic Extensions

Definition

- We say that $\alpha \in K$ is algebraic over F if there's a polynomial $f \in F[x]$ with $f(\alpha)=0$.
■ K / F is an algebraic extension if every $\alpha \in K$ is algebraic over F.

Normal Basis Theorem

■ Every number field is algebraic over \mathbb{Q}.

- If F is a number field then $F=\mathbb{Q}(\alpha)$ for some $\alpha \in F$.

Algebraic Integers

Definition

- Let K be a number field, and let $\alpha \in K$. We say α is an algebraic integer if $f(\alpha)=0$ for some $f \in \mathbb{Z}[x]$.
- The ring of integers \mathcal{O}_{K} is the set of all algebraic integers in K.

\mathbb{Q}	\mathbb{Z}
$\mathbb{Q}(i)$	$\mathbb{Z}[i]$
$\mathbb{Q}\left(\zeta_{n}\right)$	$\mathbb{Z}\left[\zeta_{n}\right]$
$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Z}\left[\frac{-1+\sqrt{-3}}{2}\right]$

Factorization

Fundamental Theorem of Arithmetic

Every integer factors uniquely up to order and sign as a product of prime numbers.

■ $6=2 \cdot 3=3 \cdot 2=-3 \cdot-2$
What about in number fields?
■ Unique factorization in $\mathbb{Z}[i], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}\left[\zeta_{19}\right]$
$\square 6=(1-\sqrt{-5})(1+\sqrt{-5}) \in \mathbb{Z}[\sqrt{-5}]$.
$\square\left(1+\zeta_{23}^{2}+\zeta_{23}^{4}+\zeta_{23}^{5}+\zeta_{23}^{6}+\zeta_{23}^{10}+\zeta_{23}^{11}\right)\left(1+\zeta_{23}+\zeta_{23}^{5}+\zeta_{23}^{6}+\zeta_{23}^{7}+\zeta_{23}^{9}+\zeta_{23}^{11}\right)$

$$
=2\left(\zeta_{23}^{5}+\zeta_{23}^{7}+\zeta_{23}^{9}+\zeta_{23}^{10}+3 \zeta_{23}^{11}+\zeta_{23}^{12}+\zeta_{23}^{13}+\zeta_{23}^{15}+\zeta_{23}^{16}+\zeta_{23}^{17}\right) \in \mathbb{Z}\left[\zeta_{23}\right]
$$

Prime Ideals and Unique Factorization

Definition

- Ideal: if a or $b \in I$ then $a b \in I$.

■ Prime ideal: If $a b \in I$ then $a \in I$ or $b \in I$.

Unique Factorization Theorem

Every ideal factors uniquely as a product of prime ideals.

Ideal Classes

Principal Ideals

An ideal is principal if it's generated by one element.
e.g. (2), (3), $(2-\sqrt{-5}+i)$. (0), (1).

Not principal: $(2,1+\sqrt{-17}),(2,1+\sqrt{-29}),(2, \sqrt{-6})$.

Definition

We say two ideals $\mathfrak{p}, \mathfrak{q} \subset K$ are equivalent if there are $a, b \in K$ such that $(a) \mathfrak{p}=(b) \mathfrak{q}$.
An equivalence class of ideals is called an ideal class. The (finite) group of ideal classes is the class group of K, and its size h_{K} is the class number.

Ideal Norms

$$
\prod_{\mathfrak{p} \subset \mathcal{O}_{K}} \frac{1}{1-\mathfrak{p}^{-s}} \quad ? ?
$$

■ It's unclear what it means to divide by an ideal.
■ Number fields don't embed in \mathbb{C} canonically.

Definition

The index of \mathfrak{p} is $\|\mathfrak{p}\|=\mathcal{O}_{K} / \mathfrak{p}$. Equivalently, $N(\mathfrak{p})=\mathbb{Z} \cap \prod_{\sigma \in G} \sigma(\mathfrak{p})$.

The Dedekind Zeta Function

Definition

The Dedekind zeta function for K is

$$
\zeta_{K}(s)=\prod_{\mathfrak{p} \subset \mathcal{O}_{F}} \frac{1}{1-\|\mathfrak{p}\|^{-s}}=\sum_{I \subset \mathcal{O}_{F}}\|I\|^{-s}=\sum_{n \geq 1} \frac{j_{n}}{n^{s}}
$$

- $\zeta_{K}(-2 n)=0$.
$\square \zeta_{K}(-n)=0$ unless K is totally real. Otherwise $\zeta_{K}(-n) \in \mathbb{Q}$.
■ Generalized Riemann Hypothesis: All nontrivial zeros in the critical strip $0<\operatorname{Re}(s)<1$ are on the critical line $\operatorname{Re}(s)=\frac{1}{2}$.

The Best Proof Technique of All Time

Gauss's Class Number Conjecture

- Gauss (1798) conjectured that as the discriminant D of an imaginary quadratic field $\mathbb{Q}(\sqrt{D})$ approaches $-\infty$, the class number $h(D) \rightarrow+\infty$.
- Hecke 1918: If the GRH is true, then the conjecture holds.

■ Heilbronn 1932: If the GRH is false, then the conjecture holds.

Thas TWO ఇnscres

Which yonmonie

The Analytic Class Number Formula

Class Number Formula

$$
\lim _{s \rightarrow 1}(s-1) \zeta_{K}(s)=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h_{K} \operatorname{Reg}_{K}}{w_{K} \cdot \sqrt{\left|D_{K}\right|}}
$$

Do we need all that information? Sadly, yes. Bosma and Smit (2002) found pairs of fields with different class numbers but the same zeta function.

The Rank Formula

\square A finitely generated abelian group has a finite set of generators.

- Isomorphic to $\mathbb{Z}^{r} \oplus \bigoplus \mathbb{Z} / n \mathbb{Z}$.
- The rank is the integer r.

Rank Formula

The group of units of \mathcal{O}_{F} is a finitely generated abelian group.

$$
\lim _{s \rightarrow 0} s^{-r} \zeta_{K}(s)=-\frac{h_{K} \operatorname{Reg}_{K}}{w(K)}
$$

Elliptic Curves

- A smooth genus 1 curve with a rational point
- $y^{2}+a_{1} x y+a_{3} y=$
$x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$
- $y^{2}=x^{3}+a x+b$

Key Question

How many rational points are there?

Group Law on Elliptic Curves

The rational points on an elliptic curve form an abelian group.

$P+Q+R=0$

$P+Q+Q=0$

$P+Q+0=0$

$P+P+0=0$

Figure : The group law on elliptic curves Emmanuel Boutet / CC-BY-SA-3.0

Elliptic Curves over Finite Fields

■ Let $E: y^{2}=x^{3}+a x+b$ for $a, b \in \mathbb{F}_{q}$.

- $E\left(\mathbb{F}_{q}\right)$ is finite.
$\square E\left(\mathbb{F}_{q}\right)$ is either cyclic or the product of two cyclic groups.
Theorem (Hasse 1933)

$$
\left|\# E\left(\mathbb{F}_{1}\right)-(q+1)\right|<2 \sqrt{q} .
$$

Elliptic Curves over a number field

- Weak Mordell-Weil Theorem: $E(K) / m E(K)$ is finite for any $m>1$.
- Mordell-Weil Theorem: $E(K)$ is a finitely generated abelian group.

■ Merel: For each K there are only finitely many possible torsion subgroups for $E(K)$.

- Conjecture: Rank is unbounded.

Fact (Elkies 2009)

The curve
$y^{2}+x y+y$
$=x^{3}-x^{2}+31368015812338065133318565292206590792820353345 x$
$+302038802698566087335643188429543498624522041683874493555186$
has rank 19.

Elliptic Curves over \mathbb{Q}

- Mazur: The torsion component of $E(\mathbb{Q})$ can only be $\mathbb{Z} / N \mathbb{Z}$ for $N=1,2, \ldots, 10,12$ or $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 N \mathbb{Z}$ for $N=1,2,3,4$.
- Still expect rank to be unbounded.
- However, we expect 50% of curves to be rank 0 and 50% to be rank 1. (100\% doesn't mean all of an infinite set)

The Hasse-Weil L-function

Definition

- E has good reduction at p if E / p is an elliptic curve.
- If E has good reduction at p, set $a_{p}=p+1-\#(E / p)\left(\mathbb{F}_{p}\right)$, and
$L_{p}(E, s)=1-a_{p} p^{-s}+p^{1-2 s}$.
$\square L(E, s)=\prod_{p} L_{p}(s, E)^{-1}$.

Facts

■ Easy fact: $L(E, s)$ converges absolutely for $\operatorname{Re}(s)>3 / 2$.

- Very, very hard fact: $L(E, s)$ has a meromorphic continuation to the complex plane (Breuil-Conrad-Diamond-Taylor 2001) .

Birch and Swinnerton-Dyer Conjecture

Conjecture (Birch and Swinnerton-Dyer 1965)

\square Rank conjecture: $\operatorname{rk} E(\mathbb{Q})=\operatorname{ord}_{s=1} L(E, s)$

- Formula:

$$
\lim _{s \rightarrow 1}(s-1)^{r} L(E, s)=\Omega_{E} \frac{\operatorname{Reg}(e) \cdot|\amalg(E)|}{|E(\mathbb{Q})|_{\text {tors }}} \prod_{\ell} c_{\ell}
$$

- Tate: "This remarkable conjecture relates the behaviour of a function L, at a point where it is not at present known to be defined, to the order of a group Ш, which is not known to be finite."

What do we know?

"Old" results

■ Gross-Zagier (1986): A modular elliptic curve with analytic rank 1 has rank at least one.

- Kolyvagin (1989): A modular elliptic curve with analytic rank 0 has rank 0, and a modular curve with analytic rank 1 has rank 1.
- Breuil et al (2001): All rational elliptic curves are modular.

This year (Bhargava, Shankar, Skinner, Urban, Zhang)

■ Average rank is $\leq .885$

- At least 83.75% have rank 0 or 1
- At least 66.48% satisfy BSD.

Bonus: Fermat's Last Theorem

\square Frey 1982: If $a^{n}+b^{n}=c^{n}$ then $y^{2}=x\left(x-a^{n}\right)\left(x+b^{n}\right)$ is an elliptic curve.
\square Serre 1985, Ribet 1986: This curve is semistable and not modular.

- Wiles 1995: All semistable elliptic curves over \mathbb{Q} are modular.
- Breuil-Conrad-Diamond-Taylor 2001: All elliptic curves over \mathbb{Q} are modular.

Generalizations of L-functions

- Dirichlet L-series $L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}$ for Dirichlet characters $\chi: \mathbb{Z} \rightarrow \mathbb{C}$.
- Artin L-functions, from a linear representation of a Galois group.
- Hecke L-functions attached to modular forms or Hecke characters
- p-adic L-functions, from p-adic interpolation or from Galois modules
■ Hasse-Weil L-functions for algebraic varieties
■ L-functions from automorphic representations
- Conjecture: these are all basically the same.

L-functions on motives

If X is a smooth projective variety and i, j are integers, a motive $M=h^{i}(X)(j)$ is essentially X together with cohomological data about X. To every motive we can associate:

- A representation $M_{l}=H_{e t}^{i}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{l}\right)(j)$
- A polynomial $P_{p}(T)=\operatorname{det}\left(1-F r_{p}^{-1} \cdot T \mid M_{l}^{I_{p}}\right) \in \mathbb{Q}_{l}[T]$, conjectured to be independent of l.
- An L function $L(M, s)=\prod_{p} P_{p}\left(p^{-s}\right)^{-1}$ analytic for $\operatorname{Re}(s) \gg 0$.
- We conjecture that $L(M, s)$ can be meromorphically continued to $s=0$,and study the Taylor expansion

$$
L(M, s)=L^{*}(M, s) s^{r(M)}+\ldots
$$

The Tamagawa number conjecture on Tate motives

