Trinity REU

Non-Minimal Factorization in Numerical Monoids Scott Chapman, Jay Daigle, Rolf Hoyer

Introduction

A monoid is a set M with a binary associative operation * and an identity element, 1 . That is, for all $a, b \in M$, we have

1. $a * b \in M$
2. $a *(b * c)=(a * b) * c$
$3.1 * a=a * 1=1$.

Numerical Monoids

A Numerical Monoid is an additive submonoid of $(\mathbb{N},+)$. We say a numerical monoid M is generated by $S=\left\{n_{1}, \ldots, n_{k}\right\}$ (write $\left.M=\left\langle n_{1}, \ldots, n_{k}\right\rangle\right)$ if M is the smallest numerical monoid containing every element of S. S is est numerical monoid containing every element of S. S is a minimal generating set if no proper subset of S also gen erates M. It turns out that every numerical monoid has a
unique minimal generating set.
A numerical monoid is primitive if the GCD of the gen erators is 1 . Every numerical monoid is isomorphic to a primitive numerical monoid, so we may ignore the rest. A prin nubers the largest natural number not in the mono ural numbers; the largest na is the Frobenius Number
The Fundamental Theorem of Arithmetic says that in the monoid (\mathbb{N}, \cdot) every element has exactly one factorization into irreducible elements, but this result does not generalize, and in particular it does not hold in numerical monoids. In the monoid $\langle 5,7\rangle$

$$
50=10 \cdot 5=3 \cdot 5+5 \cdot 7
$$

and thus the element 50 has two different factorizations, of different lengths. We define the set of length of $x, \mathcal{L}(x)$, different lengths. We define the set of lengths of $x, \mathcal{L}(x)$ $\mathcal{L}(50)=\{8,10\}$. $\mathcal{L}(50)=\{8,10\}$

Length sets and Delta sets

The delta set of x is the set of consecutive differences in $\mathcal{L}(x)$. That is, if $\mathcal{L}(x)=\left\{n_{1}, \ldots, n_{k}\right\}$ with $n_{1} \leq$ then

$$
\Delta(x)=\left\{n_{2}-n_{1}, n_{3}-n_{2}, \ldots, n_{k}-n_{k-1}\right\} .
$$

In our example, we have $\Delta(50)=\{2\}$.
Finally, we define

$$
\Delta(M)=\bigcup_{x \in M} \Delta(x) .
$$

Non-Minimal Generators

All these definitions deal with factorizations into irreducible elements, but we can factor with respect to any se that generates our monoid. Formally, let S generate a numerical monoid M. Then we define the set of lengths of x with respect to $S, \mathcal{L}^{S}(x)$, and the delta set with respect to S, Δ^{S}, by analogy with the usual definitions. Thus in the monoid $M=\langle 5,7\rangle$, if $S=\{5,7,12\}$ we have

$$
50=2 \cdot 7+3 \cdot 12=1 \cdot 5+3 \cdot 7+2 \cdot 12
$$

$$
=2 \cdot 5+4 \cdot 7+1 \cdot 12=3 \cdot 5+5 \cdot 7=10 \cdot 5
$$

so $\mathcal{L}^{S}(50)=\{5,6,7,8,10\}$ and $\Delta^{S}(50)=\{1,2\}$.

Some well-known results in the minimal case follow immediately with the new definitions:

- Proposition: Let $S=\left\{n_{1}, \ldots, n_{k}\right\}$. Then
$\min \left(\Delta^{S}(M)\right)=\operatorname{gcd}\left(\Delta^{S}(M)\right)=\operatorname{gcd}\left\{n_{i}-n_{i-1}\right\}$

A Few Examples

Nice Delta Sets

Certain classes of numerical monoids have extremely nice delta sets.

- Let $M=\left\langle n_{1}, n_{2}\right\rangle$ and $S=\left\{n_{1}, n_{2}, n_{1}+n_{2}\right\}$

Then $\Delta^{S}(M)=\left\{1,2, \ldots, n_{2}-n_{1}\right\}$.

- Let $M=\left\langle n_{1}, n_{2}\right\rangle$ and $S=\left\{n_{1}, n_{2}, n_{1} n_{2}\right\}$.

Then $\Delta^{S}(M)=\Delta^{S}\left(\left(\frac{n_{2}-1}{\operatorname{gcd}\left(n_{1}-1, n_{2}-n_{1}\right)} n_{1} n_{2}\right)\right)$

Less Nice Delta Sets

But not all obtainable delta sets are nice-looking. Some have large gaps, multiple gaps, and sometimes very have large gaps, multiple
strange apparent structures.

- $M=\langle 3,8\rangle, S=\{3,8,96\}, \Delta^{S}(M)=\{1,2,3,4,5,6,11\}$
- $M=\langle 6,11\rangle, S=\{6,11,48\}, \Delta^{S}(M)=\{1,2,3,5,7\}$
- $M=\langle 6,11,49\rangle, S=\{6,11,49\}, \Delta^{S}(M)=\{1,2,3,5,8,11\}$

Adding Many Elements

Is there a limit to how simple or ugly we can make a delta set by adding additional generators? In both cases, the answer is no.
Theorem: Let M be a numerical monoid, and $\left\{n_{1}, \ldots, n_{k}\right\}$ be a generating set for M.
For all $N \geq\left\lceil\frac{n_{k}}{n_{1}}\right\rceil n_{k}$, if $S=\{m \in M \mid m \leq N\}$, then $\Delta^{S}(M)=\{1\}$.
Theorem: For any numerical monoid M and any $n \in \mathbb{N}$ there is a finite generating set S such that $\left|\Delta^{S}(M)\right|>n$.

Adding One Element

Next we asked what could happen if we took a monoid generated by two elements and added one extra generator To analyze this setup we proved a corollary to a theorem by Nathan Kaplan:
Theorem: Let $M=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be a numerical monoid with $n_{1}<n_{2}<n_{3}$. Then $\max (\Delta(M))=\max \left(\Delta\left(k_{1} n_{1}\right) \cup\right.$ $\left.\Delta\left(k_{3} n_{3}\right)\right)$, where $k_{1}=\min \left\{k \mid k n_{1} \in\left\langle n_{2}, n_{3}\right\rangle\right\}$ and
$k_{3}=\min \left\{k \mid k n_{3} \in\left\langle n_{1}, n_{2}\right\rangle\right\}$
Corollary: Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a numerical monoid, and let $S=\left\{n_{1}, n_{2} s\right\}$, with $s=i n_{1}+j n_{2}$. Then

1. If $j \neq 0, \max \left(\Delta^{S}(H)\right)=\max \left\{n_{2}-n_{1}, i+j-1\right\}$.
2. If $j=0$ and $n_{2}<s, \max \left(\Delta^{S}(H)\right)=i-1$
3. If $j=0$ and $s<n_{2}, \max \left(\Delta^{S}(H)\right)=$
$\max \left\{i-1,\left[n_{2} / i\right]+\left\lfloor n_{2} / i\right\rfloor-n_{1}\right\}$.

Leaving the Delta Set Unchanged

First we tried to see how small a change we could get adding one element-could we keep the delta set down to one element, or even leave it unchanged? The answer is yes to both.
Theorem: Let M and S be as above. Then $\Delta(M)=$ $\Delta^{S}(M)$ if and only if $i+j-1=n_{2}-n_{1}$.
Theorem: Let M and S be as above. Then $\left|\Delta^{S}(M)\right|=1 \mathrm{i}$ and only if one of the following two conditions holds:
$1 . i+j-1=n_{2}-n_{1}$
2. $j=0$ and $m(i+j-1)=n_{2}-n_{1}$ such that $m \leq\left\lceil n_{2} / i\right\rceil$

Avoiding Holes

Sampling of various delta sets suggests that "most" delta sets are nice. We conjecture that if S is any set of natural numbers and $M=\langle S\rangle$, then $\Delta^{S}(M)=\{1, k\}$ only if $k=$ or $k=2$. That is, no monoid has the delta set $\{1,3\}$. But it's difficult to prove that a given set is never a delta set. However, we were able to prove a limited case, and along However, we were able to prove a limited case, and along the way discover another class of mo
Proposition: Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a primitive monoid, Proposition: Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a primitive monoid and let $S=\left\{n_{1}, n_{2}, i n_{1}+j n_{2}\right\}$. Suppose $i+j=2$. Then $\Delta^{S}(M)=[1, k]$ for some k.
Proposition: Let $M=\left\langle n_{1}, n_{2}\right\rangle$ be a primitive monoid and let $i, j \in \mathbb{N}_{0}$ such that $i+j-1=k\left(n_{2}-n_{1}\right)=k a$ for some $k>0$. Then if $S=\left\{n_{1}, n_{2}, i n_{1}+j n_{2}\right\}, \Delta^{S}(M)=$ $\{\alpha, 2 \alpha, \ldots, k \alpha\}$
Theorem: Let n_{1}, n_{2} be positive relatively prime integers, and let $M=\left\langle n_{1}, n_{2}\right\rangle$. Let $i, j \in \mathbb{N}_{0}$, and let $S=$ gers, and let $M=$. $\left.n_{1}, n_{2}\right\rangle$. Let $i, j \in \mathbb{N}_{0}$, and
$\left\{n_{1}, n_{2}, i n_{1}+j n_{2}\right\}$. Then if $\Delta^{S}(M)=\{1, k\}, k=2$.

Periodicity

We note that we can find the delta set of the whole monoid by examining delta sets of all elements up to a certain point, and then applying the following:
Theorem: Let M be a numerical monoid generated by $S=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$. Then if $x \geq 2 k n_{2} n_{k}^{2}$, we have $\Delta^{S}(x)=\Delta^{S}\left(x+n_{1} n_{k}\right)$.

Open Questions

- The periodicity bound $2 k n_{2} n_{k}^{2}$ is far from optimal in most cases. It might be possible to prove a much better bound, if only in more limited cases, like $k=3$.
- It seems that every element in $\Delta(M)$ shows up in $\Delta(x)$ for infinitely many x. This is proved if the following holds: Conjecture: For all $x, \Delta(x) \subset \Delta\left(x+n_{1} n_{k}\right)$
- Can we get similar results for other classes of monoids (half-factorial, block monoids, etc.)?

References

1] P. Baginski, S.T. Chapman, C. Crutchfield, K. G Kennedy, and M. Wright, elastic properties and prime elements, Results in Mathematics (2006), 187-200
[2] C. Bowles, S.T. Chapman, N. Kaplan, and D. Reiser, On delta sets of numerical monoids, Journal of Algebra and its Applications 5 (2006), no. 5, 695-718.
3] Alfred Geroldinger and Franz Halter-Koch, Non-unique factorizations: Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics, Chapman \& Hall/CRC, Boca Raton, FL, 2006

Acknowledgments

We would like to thank our research advisor, Professor Scott Chapman of Trinity University; Nathan Kaplan, our graduate student mentor; and the Trinity University REU We'd also like to thank the National Science Foundation for the support and funding that made our research possible.

For Further Information

Details of these proofs and related work, as well as this poster, are available at http://www.dci.pomona.edu/~jadagul. Correspondence can be directed to gerald. daigle@pomona.edu or hoyerrol@grinnell.edu.

