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Introduction
A monoid is a set M with a binary associative operation
∗ and an identity element, 1. That is, for all a, b ∈ M, we
have

1. a ∗ b ∈ M

2. a ∗ (b ∗ c) = (a ∗ b) ∗ c

3. 1 ∗ a = a ∗ 1 = 1.

Numerical Monoids

A Numerical Monoid is an additive submonoid of
(N, +). We say a numerical monoid M is generated by
S = {n1, . . . , nk} (write M = 〈n1, . . . , nk〉) if M is the small-
est numerical monoid containing every element of S. S is
a minimal generating set if no proper subset of S also gen-
erates M. It turns out that every numerical monoid has a
unique minimal generating set.
A numerical monoid is primitive if the GCD of the gen-

erators is 1. Every numerical monoid is isomorphic to a
primitive numerical monoid, so we may ignore the rest. A
primitive monoid contains all but a finite subset of the nat-
ural numbers; the largest natural number not in the monoid
is the Frobenius Number .
The Fundamental Theorem of Arithmetic says that in the

monoid (N, ·) every element has exactly one factorization
into irreducible elements, but this result does not gen-
eralize, and in particular it does not hold in numerical
monoids. In the monoid 〈5, 7〉,

50 = 10 · 5 = 3 · 5 + 5 · 7
and thus the element 50 has two different factorizations, of
different lengths. We define the set of lengths of x, L(x),
to be the set of lengths of possible factorizations of x; thus
L(50) = {8, 10}.

Length sets and Delta sets

The delta set of x is the set of consecutive differences in
L(x). That is, if L(x) = {n1, . . . , nk} with n1 ≤ · · · ≤ nk,
then

∆(x) = {n2− n1, n3− n2, . . . , nk− nk−1}.
In our example, we have ∆(50) = {2}.
Finally, we define

∆(M) =
⋃

x∈M
∆(x).

Non-Minimal Generators
All these definitions deal with factorizations into irre-
ducible elements, but we can factor with respect to any set
that generates our monoid. Formally, let S generate a nu-
merical monoid M. Then we define the set of lengths of x
with respect to S, LS(x), and the delta set with respect to
S, ∆S, by analogy with the usual definitions. Thus in the
monoid M = 〈5, 7〉, if S = {5, 7, 12} we have

50 = 2 · 7 + 3 · 12 = 1 · 5 + 3 · 7 + 2 · 12
= 2 · 5 + 4 · 7 + 1 · 12 = 3 · 5 + 5 · 7 = 10 · 5

so LS(50) = {5, 6, 7, 8, 10} and ∆S(50) = {1, 2}.
Some well-known results in the minimal case follow im-

mediately with the new definitions:
• Proposition: Let S = {n1, . . . , nk}. Then

min(∆S(M)) = gcd(∆S(M)) = gcd{ni− ni−1}.

A Few Examples
Nice Delta Sets

Certain classes of numerical monoids have extremely nice
delta sets.
• Let M = 〈n1, n2〉 and S = {n1, n2, n1 + n2}.

Then ∆S(M) = {1, 2, . . . , n2− n1}.
• Let M = 〈n1, n2〉 and S = {n1, n2, n1n2}.

Then ∆S(M) = ∆S
(
( n2−1

gcd(n1−1,n2−n1)
n1n2)

)
.

Less Nice Delta Sets

But not all obtainable delta sets are nice-looking. Some
have large gaps, multiple gaps, and sometimes very
strange apparent structures.

• M = 〈3, 8〉, S = {3, 8, 96}, ∆S(M) = {1, 2, 3, 4, 5, 6, 11}.
• M = 〈6, 11〉, S = {6, 11, 48}, ∆S(M) = {1, 2, 3, 5, 7}.
• M = 〈6, 11, 49〉, S = {6, 11, 49}, ∆S(M) = {1, 2, 3, 5, 8, 11}

Adding Many Elements
Is there a limit to how simple or ugly we can make a delta
set by adding additional generators? In both cases, the an-
swer is no.

Theorem: Let M be a numerical monoid, and
{n1, . . . , nk} be a generating set for M.
For all N ≥

⌈
nk
n1

⌉
nk, if S = {m ∈ M | m ≤ N}, then

∆S(M) = {1}.
Theorem: For any numerical monoid M and any n ∈N,

there is a finite generating set S such that |∆S(M)| > n.

Adding One Element
Next we asked what could happen if we took a monoid
generated by two elements and added one extra generator.
To analyze this setup we proved a corollary to a theorem
by Nathan Kaplan:

Theorem: Let M = 〈n1, n2, n3〉 be a numerical monoid
with n1 < n2 < n3. Then max(∆(M)) = max(∆(k1n1) ∪
∆(k3n3)), where k1 = min{k | kn1 ∈ 〈n2, n3〉} and
k3 = min{k | kn3 ∈ 〈n1, n2〉}.

Corollary: Let M = 〈n1, n2〉 be a numerical monoid, and
let S = {n1, n2s}, with s = in1 + jn2. Then

1. If j 6= 0, max(∆S(H)) = max{n2− n1, i + j− 1}.
2. If j = 0 and n2 < s, max(∆S(H)) = i− 1.

3. If j = 0 and s < n2, max(∆S(H)) =
max{i− 1, [n2/i] + bn2/ic − n1}.

Leaving the Delta Set Unchanged

First we tried to see how small a change we could get
adding one element—could we keep the delta set down to
one element, or even leave it unchanged? The answer is
yes to both.

Theorem: Let M and S be as above. Then ∆(M) =
∆S(M) if and only if i + j− 1 = n2− n1.

Theorem: Let M and S be as above. Then |∆S(M)| = 1 if
and only if one of the following two conditions holds:

1. i + j− 1 = n2− n1.

2. j = 0 and m(i + j− 1) = n2− n1 such that m ≤ dn2/ie.

Avoiding Holes

Sampling of various delta sets suggests that “most” delta
sets are nice. We conjecture that if S is any set of natural
numbers and M = 〈S〉, then ∆S(M) = {1, k} only if k = 1
or k = 2. That is, no monoid has the delta set {1, 3}. But
it’s difficult to prove that a given set is never a delta set.
However, we were able to prove a limited case, and along
the way discover another class of monoids and generating
sets with particularly nice delta sets.

Proposition: Let M = 〈n1, n2〉 be a primitive monoid,
and let S = {n1, n2, in1 + jn2}. Suppose i + j = 2. Then
∆S(M) = [1, k] for some k.

Proposition: Let M = 〈n1, n2〉 be a primitive monoid
and let i, j ∈ N0 such that i + j − 1 = k(n2 − n1) = kα
for some k > 0. Then if S = {n1, n2, in1 + jn2}, ∆S(M) =
{α, 2α, . . . , kα}.

Theorem: Let n1, n2 be positive relatively prime inte-
gers, and let M = 〈n1, n2〉. Let i, j ∈ N0, and let S =
{n1, n2, in1 + jn2}. Then if ∆S(M) = {1, k}, k = 2.

Periodicity
We note that we can find the delta set of the whole monoid
by examining delta sets of all elements up to a certain point,
and then applying the following:

Theorem: Let M be a numerical monoid generated
by S = {n1, n2, . . . , nk}. Then if x ≥ 2kn2n2

k, we have
∆S(x) = ∆S(x + n1nk).

Open Questions
• The periodicity bound 2kn2n2

k is far from optimal in most
cases. It might be possible to prove a much better bound,
if only in more limited cases, like k = 3.

• It seems that every element in ∆(M) shows up in ∆(x) for
infinitely many x. This is proved if the following holds:
Conjecture: For all x, ∆(x) ⊂ ∆(x + n1nk).

• Can we get similar results for other classes of monoids
(half-factorial, block monoids, etc.)?
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For Further Information
Details of these proofs and related work, as well as this
poster, are available at http://www.dci.pomona.edu/~jadagul.
Correspondence can be directed to gerald.daigle@pomona.edu

or hoyerrol@grinnell.edu.
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