
MATHEMATICS COMPREHENSIVE EXAMINATION, SPRING 2006

NAME: Start Time:

Each question is worth 4 points. You have three hours. Show your work!

Single Variable Calculus

1. Suppose you know that f(t) =
∫ t

1
g(s) ds and that g(1) = 2.

a. Find f(1) and f ′(1).

b. Find the equation for the line tangent to the graph of f at the point (1, f(1)).

2. Consider the initial value problem y′ = −y2 and y(0) = 2.

a. Use Euler’s Method with stepsize ∆x = 1/2 to estimate y(1).

b. Briefly explain how to obtain a better estimate of y(1).
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3. The following table of values for the first derivative f ′(x) is given:
x 0 1 2 3 4

f ′(x) 4 3 0 -3 -4

a. Estimate the second derivative f ′′(0). Show your work.

b. True or False (explain): The graph of the function f is concave up at x = 0.

4. Suppose f(g(x)) = x, g(0) = 1, and f ′(1) = 2. Find g′(0).
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5. Consider the function h(x) = |x|. For each of the following, either evaluate the expression or
briefly explain why it doesn’t exist:

a. h′(0) =

b.
∫ 1

−1
h(x) dx =

6.
∫

x lnxdx =
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7. A hiker starts hiking at 9 am. There are some hills; she walks faster downhill than uphill.
Her speed is s(t) = 1.5− sin(πt) miles per hour. Here t is hours elapsed since 9 am.

a. How far did she hike by 1 pm?

b. How many hills did she climb during that time? Explain.

8. Consider the infinite series
∞∑

k=1

(−1)k+1 xk

k
= x− 1

2
x2 +

1
3
x3 − 1

4
x4 + . . ..

a. This series converges when x = 1. Why?

b. This series is the Taylor series of a certain function f(x) expanded about the origin.
What is the value of f ′′(0)? Do not differentiate the series to find out!
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9. Find the area enclosed between the graph of the parabola f(x) = 2−x2 and the line g(x) = 1
2x.

Do not bother to simplify your final answer!

10. Evaluate lim
b→∞

∫ b

0
e−x dx.
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Multivariable/Vector Calculus

11. The temperature in deg F on the surface of a 10 ft. by 8 ft. plate glass window is given by

T (x, y) = 72 + y +
1
80

xy, 0 ≤ x ≤ 10, 0 ≤ y ≤ 8.

a. Find the gradient ∇T (x, y).

b. If a fly were located at the point (1, 1), in which direction would it start moving if it
wanted to increase its temperature the most? Your answer should be a 2-dimensional
vector.

12. The function F (x, y) = x2 − y3 is differentiable at the point (2, 3). Find the equation for the
plane tangent to the graph of F at this point.
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13. Once again, consider the temperature in deg F on the surface of a 10 ft. by 8 ft. plate glass
window given by

T (x, y) = 72 + y +
1
80

xy, 0 ≤ x ≤ 10, 0 ≤ y ≤ 8.

Starting at the point (10, 5), a fly walks across the window along the curve (x(t), y(t)) =
(10− t, t + 5) for 0 ≤ t ≤ 1 minute.

a. At what point on this path was the temperature greatest?

b. What was the value of that greatest temperature?

14.
∫ 1

0

∫ 3

z
1 + w2z dw dz =
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15. Consider the vector field ~F (x, y) = (x, y) and the curve ~r(t) = (cos t, sin t), 0 ≤ t < 2π.

a. Without calculating it, clearly explain why the line integral
∫ t=2π

t=0

~F · d~r = 0.

b. Then confirm that
∫ t=2π

t=0

~F · d~r = 0 by showing the details of the calculation.
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Linear Systems

16. a. Prove or disprove: If λ is an eigenvalue of A, then λm is an eigenvalue of Am.

b. Find all the eigenvalues of the permuation matrix

[
0 1
1 0

]
.

17. This problem concerns subspaces of a vector space R2.

a. Prove or disprove: V = {(0, 1) + c(1, 1), c ∈ R} is a subspace of R2.

b. Find a subpace of R2 orthogonal to the subspace W = {c(1, 1), c ∈ R}.
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18. a. Define what it means for a finite set of vectors {~v1, ~v2, . . . , ~vn} to be linearly independent.

b. Is the following set of three vectors in R2 linearly independent? Explain your answer.[
1
2

]
,

[
3
0

]
,

[
2
−2

]
,

[
2
1

]

19. Use the fact that det(AB) = det(A) det(B) to prove:

If A is nonsingular, then det(A−1) = 1/ det(A).
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20. Consider the matrix A =

[
1 2 2 4
3 0 6 10

]
.

a. Find a basis for the nullspace of A.

b. Either find the general solution of A~x = ~b, where ~b =

[
1
2

]
, or explain why such a

solution doesn’t exist.
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Discrete Mathematics

Please answer the following questions without working out the permutations, combinations,
factorials or powers (i.e. do not simplify your answers).

21. Let A = {(p, q)|p, q ∈ Z, q 6= 0}. Define the relation ∼ on A by

(p, q) ∼ (r, s) ⇐⇒ p · s = r · q

.

Prove or disprove: ∼ is an equivalence relation on A.

22. Prove or disprove: “The following logical proposition is true no matter what the truth values
of propositions p and q are: ”

(p → q) → (¬q → ¬p).
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23. An ice cream shop has 21 flavors of ice cream. You can order either one or two scoops on a
cone.

a. If the order in which the scoops are placed on the cone doesn’t matter, how many different
ways can you order a cone from this ice cream shop?

b. If the order in which the scoops are placed on the cone does matter, how many different
ways can you order a cone from this ice cream shop?

24. a. The following statement is false! Correct it.

“A function f : X → Y is one-to-one if and only if ∀y ∈ Y, ∃x ∈ X such that f(x) = y.”

b. How many onto functions are there from X to Y if |X| = 3 and |Y | = 2?
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25. Prove that the four-digit positive integer n = abcd is divisible by 9 if and only if a + b + c + d
is divisible by 9.
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