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Motivating Examples

 a b c
b d e
c e f


 1 1 0

0 1 1
1 0 1


 1+

√
3i

2 0 0

0 1−
√
3i

2 0
0 0 2


 −5 0 4
−4 −2 2
1 4 −3


Fact

Every matrix is similar to a complex symmetric matrix.
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Unitary Equivalence

Definition

Let U be a n× n matrix. If U is an invertible isometry, then we say
U is unitary.

Definition

If A and B are n × n matrices and A = UBU−1 for some unitary
matrix U, then A is unitarily equivalent to B.
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Outlines of the Problem

Every square matrix is similar to a complex symmetric matrix
(CSM).

Not every square matrix is unitarily equivalent to a CSM
(UECSM).

Develop techniques to tell the difference.

Classify 3× 3 UECSM.
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Why is this hard?

Most useful invariants are similarity invariants.

det(A) = det(Q−1BQ)

= det(Q−1) det(B) det(Q)

= det(Q−1) det(Q) det(B)

= det(I ) det(B) = det(B)

Determinant

Trace

Eigenvalues

Rank

Minimum Polynomial

Jordan Form
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The Conjugate Transpose T ∗

Definition

If T = (aij) is a square complex matrix, then we say that
T ∗ = (aji ) is its conjugate transpose.

T =

 1 6 i
2i −3 + 4i 4− 3i
−2 5 3

 T ∗ =

 1 −2i −2
6 −3− 4i 5
−i 4 + 3i 3


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Conjugations

Definition

A conjugation C is a isometric antilinear involution.

Isometric: leaves sizes and angles unchanged.

Antilinear: C (λx) = λCx .

Involution: C ◦ C = I .

Definition

The standard conjugation J takes a vector to its conjugate:

J(x1, x2, . . . , xn) = (x1, x2, . . . , xn).
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C -symmetry

Definition

We say a matrix T is C-symmetric if there exists a conjugation C
such that T = CT ∗C.

Theorem

A matrix is UECSM if and only if it is C-symmetric for some
conjugation C.

Jay Daigle C -Symmetric Matrices



Definitions and Background
Our Tools

Next Steps

C -symmetry

Definition

We say a matrix T is C-symmetric if there exists a conjugation C
such that T = CT ∗C.

Theorem

A matrix is UECSM if and only if it is C-symmetric for some
conjugation C.

Jay Daigle C -Symmetric Matrices



Definitions and Background
Our Tools

Next Steps

C -symmetry

Definition

We say a matrix T is C-symmetric if there exists a conjugation C
such that T = CT ∗C.

Theorem

A matrix is UECSM if and only if it is C-symmetric for some
conjugation C.

Jay Daigle C -Symmetric Matrices



Definitions and Background
Our Tools

Next Steps

Derivative Results

Every 2× 2 matrix is UECSM.

Rank 1 matrices are UECSM.

Direct sum of UECSM is UECSM.
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A Brief Review of Eigenvectors

Definition

Let T be a matrix. Then if there exists a vector v and a scalar λ
such that Tv − λv = 0, then we say that λ is an eigenvalue of T
and v is an eigenvector with eigenvalue λ.

Definition

Let T , v , λ be as above. If there exists a natural number n such
that (T − λI )nv = 0 then v is a generalized eigenvector of T with
eigenvalue λ.
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Conjugating Eigenvectors

Fact

T and T ∗ have conjugate eigenvalues.

Tv = λv ⇒ T ∗u = λu.

λv = Tv = CT ∗Cv

λ(Cv) = C (λv) = CTv = T ∗(Cv)

Thus Cv is an eigenvector of T ∗ with eigenvalue λ.

Thus C must take eigenvectors of T to corresponding eigenvectors
of T ∗.
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Classification of 3× 3 Matrices

How to Classify?

Unitary Equivalence is an equivalence relation.

Which representative should we use?

Schur’s Theorem

Every square matrix is unitarily equivalent to an upper triangular
matrix.

 λ1 a b
0 λ2 c
0 0 λ3



Jay Daigle C -Symmetric Matrices



Definitions and Background
Our Tools

Next Steps

Classification of 3× 3 Matrices

How to Classify?

Unitary Equivalence is an equivalence relation.

Which representative should we use?

Schur’s Theorem

Every square matrix is unitarily equivalent to an upper triangular
matrix.

 λ1 a b
0 λ2 c
0 0 λ3



Jay Daigle C -Symmetric Matrices



Definitions and Background
Our Tools

Next Steps

Classification of 3× 3 Matrices

How to Classify?

Unitary Equivalence is an equivalence relation.

Which representative should we use?

Schur’s Theorem

Every square matrix is unitarily equivalent to an upper triangular
matrix.

 λ1 a b
0 λ2 c
0 0 λ3



Jay Daigle C -Symmetric Matrices



Definitions and Background
Our Tools

Next Steps

Classification of 3× 3 Matrices

How to Classify?

Unitary Equivalence is an equivalence relation.

Which representative should we use?

Schur’s Theorem

Every square matrix is unitarily equivalent to an upper triangular
matrix.

 λ1 a b
0 λ2 c
0 0 λ3



Jay Daigle C -Symmetric Matrices



Definitions and Background
Our Tools

Next Steps

Classification of 3× 3 Matrices

How to Classify?

Unitary Equivalence is an equivalence relation.

Which representative should we use?

Schur’s Theorem

Every square matrix is unitarily equivalent to an upper triangular
matrix.

 λ1 a b
0 λ2 c
0 0 λ3



Jay Daigle C -Symmetric Matrices



Definitions and Background
Our Tools

Next Steps

Classification of 3× 3 Matrices

A (Pseudo)-General Algorithm

T =

 0 a b
0 0 0
0 0 1



u0 =

 1
0
0

 , u1 =

 b
0
1

 , v0 =

 0
1
0

 , v1 =

 0
0
1


|b + 0 + 0| = |0 + 0 + 0|
u0 → v0, u1 → v1, uλ → vλ.
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Next Steps

Classification of 3× 3 Matrices

One Eigenvalue

 0 a b
0 0 c
0 0 0



 0 0 b
0 0 c
0 0 0


Rank 1

 0 a b
0 0 0
0 0 0


Rank 1

 0 a b
0 0 c
0 0 0


|a| = |c |
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Partial Isometries

Definition

A matrix T is a partial isometry if there exists a unitary matrix U
and an orthogonal projection P such that T = UP.

Proposition

Every 3× 3 partial isometry is UECSM.

Conjecture

Every 3× 3 UECSM is a rank 1 matrix, a 2× 2⊕ 1× 1, or some
multiple of a partial isometry, plus some multiple of the identity
matrix.
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〈2∗u111∗u211+2∗u112∗u212+2∗u121∗u221+2∗u122∗u222+2∗u131∗u231+2∗u132∗u232, 2∗u111∗u311+
2∗u112∗u312+2∗u121∗u321+2∗u122∗u322+2∗u131∗u331+2∗u132∗u332, 2∗u211∗u311+2∗u212∗u312+2∗
u221∗u321+2∗u222∗u322+2∗u231∗u331+2∗u232∗u332, 2∗u111∗u212+2∗u131∗u232−2∗u122∗u221+2∗
u121∗u222−2∗u112∗u211−2∗u132∗u231, 2∗u121∗u322−2∗u112∗u311−2∗u132∗u331+2∗u111∗u312+2∗
u131∗u332−2∗u122∗u321,−2∗u222∗u321+2∗u221∗u322−2∗u212∗u311−2∗u232∗u331+2∗u211∗u312+
2∗u231∗u332, 1−u1112−u1122−u1212−u1222−u1312−u1322, 1−u2112−u2122−u2212−u2222−u2312−
u2322, 1−u3112−u3122−u3212−u3222−u3312−u3322,−2∗s111∗u111+2∗s112∗u112−2∗s121∗u211+2∗
s122∗u212−2∗s131∗u311+2∗s132∗u312, 2∗u111∗a1−2∗s111∗u121−2∗u112∗a2−2∗s121∗u221+2∗s112∗
u122+2∗s122∗u222−2∗s131∗u321+2∗s132∗u322+2∗u121, 2∗u111∗b1+2∗u121∗c1−2∗u112∗b2−2∗u122∗
c2+2∗u131∗q1−2∗u132∗q2−2∗s111∗u131−2∗s121∗u231+2∗s112∗u132+2∗s122∗u232−2∗s131∗u331+2∗
s132∗u332,−2∗s121∗u111+2∗s122∗u112−2∗s221∗u211+2∗s222∗u212−2∗s231∗u311+2∗s232∗u312,−2∗
u212∗a2+2∗u211∗a1+2∗s222∗u222−2∗s221∗u221+2∗s122∗u122−2∗s121∗u121+2∗s232∗u322−2∗s231∗
u321+2∗u221, 2∗u211∗b1−2∗u212∗b2−2∗s121∗u131−2∗u232∗q2+2∗u231∗q1−2∗u222∗c2+2∗u221∗c1−
2∗s231∗u331+2∗s222∗u232−2∗s221∗u231+2∗s122∗u132+2∗s232∗u332,−2∗s131∗u111+2∗s132∗u112−
2∗s231∗u211+2∗s232∗u212−2∗s331∗u311+2∗s332∗u312, 2∗s132∗u122−2∗s131∗u121−2∗s231∗u221+2∗
s232∗u222−2∗s331∗u321+2∗s332∗u322+2∗u321+2∗u311∗a1−2∗u312∗a2,−2∗u322∗c2−2∗u332∗q2+2∗
u331∗q1−2∗s131∗u131+2∗s232∗u232−2∗s231∗u231+2∗s132∗u132−2∗s331∗u331+2∗s332∗u332+2∗u321∗
c1+2∗u311∗b1−2∗u312∗b2, 2∗s112∗u111+2∗s122∗u211+2∗s131∗u312+2∗s121∗u212+2∗s111∗u112+2∗
s132∗u311,−2∗u122−2∗u111∗a2+2∗s111∗u122−2∗u112∗a1+2∗s131∗u322+2∗s132∗u321+2∗s112∗u121+
2∗s122∗u221+2∗s121∗u222,−2∗u132∗q1−2∗u131∗q2−2∗u111∗b2−2∗u112∗b1−2∗u121∗c2−2∗u122∗
c1+2∗s111∗u132+2∗s112∗u131+2∗s121∗u232+2∗s122∗u231+2∗s131∗u332+2∗s132∗u331, 2∗s222∗u211+
2∗s221∗u212+2∗s122∗u111+2∗s121∗u112+2∗s231∗u312+2∗s232∗u311, 2∗s231∗u322−2∗u222+2∗s222∗
u221−2∗u211∗a2−2∗u212∗a1+2∗s121∗u122+2∗s122∗u121+2∗s221∗u222+2∗s232∗u321,−2∗u231∗q2−
2∗u211∗b2−2∗u221∗c2+2∗s221∗u232−2∗u232∗q1−2∗u222∗c1+2∗s231∗u332+2∗s222∗u231−2∗u212∗b1+
2∗s121∗u132+2∗s122∗u131+2∗s232∗u331, 2∗s131∗u112+2∗s331∗u312+2∗s232∗u211+2∗s132∗u111+2∗
s231∗u212+2∗s332∗u311,−2∗u322−2∗u311∗a2−2∗u312∗a1+2∗s131∗u122+2∗s132∗u121+2∗s231∗u222+
2∗s232∗u221+2∗s331∗u322+2∗s332∗u321,−2∗u322∗c1−2∗u321∗c2−2∗u331∗q2+2∗s231∗u232+2∗s232∗
u231+2∗s331∗u332+2∗s332∗u331−2∗u312∗b1−2∗u332∗q1+2∗s131∗u132+2∗s132∗u131−2∗u311∗b2〉
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To Paraphrase Richard Feynman:

Math is like sex. Sure, it may give some practical results, but
that’s not why we do it.
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