# Towards a Classification of $3 \times 3$ *C*-Symmetric Matrices

Jay Daigle
Advisor: Stephan Garcia
gjd02004@mymail.pomona.edu
http://www.dci.pomona.edu/~jadagul

Pomona College

September 14, 2016







$$\left(\begin{array}{ccc}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)$$

$$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} \frac{1+\sqrt{3}i}{2} & 0 & 0 \\ 0 & \frac{1-\sqrt{3}i}{2} & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{3}i}{2} & 0 & 0 \\ 0 & \frac{1-\sqrt{3}i}{2} & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix} -5 & 0 & 4 \\ -4 & -2 & 2 \\ 1 & 4 & -3 \end{pmatrix}$$

$$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{3}i}{2} & 0 & 0 \\ 0 & \frac{1-\sqrt{3}i}{2} & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix} -5 & 0 & 4 \\ -4 & -2 & 2 \\ 1 & 4 & -3 \end{pmatrix}$$

$$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{3}i}{2} & 0 & 0 \\ 0 & \frac{1-\sqrt{3}i}{2} & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\begin{pmatrix} -5 & 0 & 4 \\ -4 & -2 & 2 \\ 1 & 4 & -3 \end{pmatrix}$$

#### Fact

Every matrix is similar to a complex symmetric matrix.

# Unitary Equivalence

### Unitary Equivalence

#### Definition

Let U be a  $n \times n$  matrix. If U is an invertible isometry, then we say U is unitary.

### Unitary Equivalence

#### Definition

Let U be a  $n \times n$  matrix. If U is an invertible isometry, then we say U is unitary.

#### Definition

If A and B are  $n \times n$  matrices and  $A = UBU^{-1}$  for some unitary matrix U, then A is unitarily equivalent to B.

 Every square matrix is similar to a complex symmetric matrix (CSM).

- Every square matrix is similar to a complex symmetric matrix (CSM).
- Not every square matrix is unitarily equivalent to a CSM (UECSM).

- Every square matrix is similar to a complex symmetric matrix (CSM).
- Not every square matrix is unitarily equivalent to a CSM (UECSM).
- Develop techniques to tell the difference.



- Every square matrix is similar to a complex symmetric matrix (CSM).
- Not every square matrix is unitarily equivalent to a CSM (UECSM).
- Develop techniques to tell the difference.
- Classify 3 × 3 UECSM.

Most useful invariants are similarity invariants.

Most useful invariants are similarity invariants.

$$det(A) = det(Q^{-1}BQ)$$

$$= det(Q^{-1}) det(B) det(Q)$$

$$= det(Q^{-1}) det(Q) det(B)$$

$$= det(I) det(B) = det(B)$$

Most useful invariants are similarity invariants.

$$det(A) = det(Q^{-1}BQ)$$

$$= det(Q^{-1}) det(B) det(Q)$$

$$= det(Q^{-1}) det(Q) det(B)$$

$$= det(I) det(B) = det(B)$$

- Determinant
- Trace
- Eigenvalues

- Rank
- Minimum Polynomial
- Jordan Form



#### Definition

If  $T = (a_{ij})$  is a square complex matrix, then we say that  $T^* = (\overline{a_{ji}})$  is its conjugate transpose.

#### Definition

If  $T = (a_{ij})$  is a square complex matrix, then we say that  $T^* = (\overline{a_{ji}})$  is its conjugate transpose.

$$T = \begin{pmatrix} 1 & 6 & i \\ 2i & -3 + 4i & 4 - 3i \\ -2 & 5 & 3 \end{pmatrix}$$



#### Definition

If  $T = (a_{ij})$  is a square complex matrix, then we say that  $T^* = (\overline{a_{ji}})$  is its conjugate transpose.

$$T = \begin{pmatrix} 1 & 6 & i \\ 2i & -3 + 4i & 4 - 3i \\ -2 & 5 & 3 \end{pmatrix} \qquad T^* = \begin{pmatrix} 1 & -2i & -2 \\ 6 & -3 - 4i & 5 \\ -i & 4 + 3i & 3 \end{pmatrix}$$

#### Definition

A conjugation C is a isometric antilinear involution.

#### Definition

A conjugation C is a isometric antilinear involution.

• Isometric: leaves sizes and angles unchanged.

#### Definition

A conjugation C is a isometric antilinear involution.

- Isometric: leaves sizes and angles unchanged.
- Antilinear:  $C(\lambda x) = \overline{\lambda} Cx$ .

#### Definition

A conjugation C is a isometric antilinear involution.

• Isometric: leaves sizes and angles unchanged.

• Antilinear:  $C(\lambda x) = \overline{\lambda} Cx$ .

• Involution:  $C \circ C = I$ .

#### Definition

A conjugation C is a isometric antilinear involution.

- Isometric: leaves sizes and angles unchanged.
- Antilinear:  $C(\lambda x) = \overline{\lambda} Cx$ .
- Involution:  $C \circ C = I$ .

#### Definition

The standard conjugation J takes a vector to its conjugate:

$$J(x_1, x_2, \ldots, x_n) = (\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}).$$



# C-symmetry

#### C-symmetry

#### Definition

We say a matrix T is C-symmetric if there exists a conjugation C such that  $T = CT^*C$ .

## *C*-symmetry

#### Definition

We say a matrix T is C-symmetric if there exists a conjugation C such that  $T = CT^*C$ .

#### Theorem

A matrix is UECSM if and only if it is C-symmetric for some conjugation C.

• Every  $2 \times 2$  matrix is UECSM.

- Every  $2 \times 2$  matrix is UECSM.
- Rank 1 matrices are UECSM.

- Every 2 × 2 matrix is UECSM.
- Rank 1 matrices are UECSM.
- Direct sum of UECSM is UECSM.

# A Brief Review of Eigenvectors

## A Brief Review of Eigenvectors

### Definition

Let T be a matrix. Then if there exists a vector v and a scalar  $\lambda$  such that  $Tv - \lambda v = 0$ , then we say that  $\lambda$  is an eigenvalue of T and v is an eigenvector with eigenvalue  $\lambda$ .

## A Brief Review of Eigenvectors

### Definition

Let T be a matrix. Then if there exists a vector v and a scalar  $\lambda$  such that  $Tv - \lambda v = 0$ , then we say that  $\lambda$  is an eigenvalue of T and v is an eigenvector with eigenvalue  $\lambda$ .

#### Definition

Let  $T, v, \lambda$  be as above. If there exists a natural number n such that  $(T - \lambda I)^n v = 0$  then v is a generalized eigenvector of T with eigenvalue  $\lambda$ .

### Fact

T and  $T^*$  have conjugate eigenvalues.

### Fact

T and  $T^*$  have conjugate eigenvalues.

$$Tv = \lambda v \Rightarrow T^*u = \overline{\lambda}u.$$

#### **Fact**

T and  $T^*$  have conjugate eigenvalues.

$$Tv = \lambda v \Rightarrow T^*u = \overline{\lambda}u.$$

$$\lambda v = Tv = CT^*Cv$$

$$\overline{\lambda}(Cv) = C(\lambda v) = CTv = T^*(Cv)$$

Thus Cv is an eigenvector of  $T^*$  with eigenvalue  $\overline{\lambda}$ .

#### **Fact**

T and  $T^*$  have conjugate eigenvalues.

$$Tv = \lambda v \Rightarrow T^*u = \overline{\lambda}u.$$

$$\lambda v = Tv = CT^*Cv$$

$$\overline{\lambda}(Cv) = C(\lambda v) = CTv = T^*(Cv)$$

Thus Cv is an eigenvector of  $T^*$  with eigenvalue  $\overline{\lambda}$ .

Thus C must take eigenvectors of T to corresponding eigenvectors of  $T^*$ .



• Unitary Equivalence is an equivalence relation.

- Unitary Equivalence is an equivalence relation.
- Which representative should we use?

- Unitary Equivalence is an equivalence relation.
- Which representative should we use?

### Schur's Theorem

Every square matrix is unitarily equivalent to an upper triangular matrix.

- Unitary Equivalence is an equivalence relation.
- Which representative should we use?

### Schur's Theorem

Every square matrix is unitarily equivalent to an upper triangular matrix.

$$\left(\begin{array}{ccc}
\lambda_1 & a & b \\
0 & \lambda_2 & c \\
0 & 0 & \lambda_3
\end{array}\right)$$

$$T = \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

$$T = \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$u_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, u_1 = \begin{pmatrix} b \\ 0 \\ 1 \end{pmatrix}, v_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, v_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$T = \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$u_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, u_1 = \begin{pmatrix} b \\ 0 \\ 1 \end{pmatrix}, v_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, v_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$|b+0+0| = |0+0+0|$$

$$T = \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

$$u_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, u_1 = \begin{pmatrix} b \\ 0 \\ 1 \end{pmatrix}, v_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, v_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$|b+0+0| = |0+0+0|$$
  
 $u_0 \to v_0, \ u_1 \to v_1, \ u_\lambda \to v_\lambda.$ 



## Our Cases

## Our Cases

$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)$$

### Our Cases

$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right) \quad \left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 1
\end{array}\right) \quad \left(\begin{array}{ccc}
0 & a & b \\
0 & 1 & c \\
0 & 0 & \lambda
\end{array}\right)$$

$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)$$

$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)$$

$$\begin{pmatrix}
0 & 0 & b \\
0 & 0 & c \\
0 & 0 & 0
\end{pmatrix}$$
Rank 1

$$\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
Rank 1 Rank 1

$$\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$

$$Rank 1 \qquad Rank 1 \qquad |a| = |c|$$

$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 1
\end{array}\right)$$

$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 1
\end{array}\right)$$

$$\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$
Rank 1  $2 \times 2 \oplus 1 \times 1$ 

$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 1
\end{array}\right)$$

$$\left(\begin{array}{cccc}
0 & 0 & b \\
0 & 0 & c \\
0 & 0 & 1
\end{array}\right)$$

$$\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
Park 1
$$2 \times 2 \oplus 1 \times 1$$
And Task

$$2 \times 2 \oplus 1 \times 1$$

$$\left( egin{array}{ccc} 0 & a & b \ 0 & 0 & 0 \ 0 & 0 & 1 \end{array} 
ight)$$

Angle Test

$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 1
\end{array}\right)$$

$$\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
0 & a & 0 \\
0 & 0 & 0 \\
\hline
0 & 0 & 1
\end{pmatrix}$$

$$2 \times 2 \oplus 1 \times 1$$

$$\left(\begin{array}{cccc}
0 & a & b \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

Angle Test

$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 1
\end{array}\right) \quad \left(\begin{array}{ccc}
0 & a & 0 \\
0 & 0 & c \\
0 & 0 & 1
\end{array}\right)$$



$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 1 & c \\
0 & 0 & \lambda
\end{array}\right)$$

$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 1 & c \\
0 & 0 & \lambda
\end{array}\right)$$

$$\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & c \\
0 & 0 & \lambda
\end{pmatrix} \qquad
\begin{pmatrix}
0 & a & 0 \\
0 & 1 & 0 \\
\hline
0 & 0 & \lambda
\end{pmatrix} \qquad
\begin{pmatrix}
0 & 0 & b \\
0 & 1 & 0 \\
0 & 0 & \lambda
\end{pmatrix}$$

$$2 \times 2 \qquad 2 \times 2 \oplus 1 \times 1 \qquad 2 \times 2 \oplus 1 \times 1$$

$$\begin{pmatrix} 0 & a & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & \lambda \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{pmatrix} \\ 2 \times 2 \oplus 1 \times 1 \qquad 2 \times 2 \oplus 1 \times 1$$

$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 1 & c \\
0 & 0 & \lambda
\end{array}\right)$$

$$\begin{pmatrix} \begin{array}{c|cccc} 0 & 0 & 0 \\ \hline 0 & 1 & c \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \qquad \begin{pmatrix} \begin{array}{c|cccc} 0 & a & 0 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \qquad \begin{pmatrix} \begin{array}{c|cccc} 0 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \\ 2 \times 2 \qquad 2 \times 2 \oplus 1 \times 1 \qquad 2 \times 2 \oplus 1 \times 1 \\ \\ \begin{pmatrix} \begin{array}{c|cccc} 0 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \qquad \begin{pmatrix} \begin{array}{c|cccc} 0 & 0 & b \\ 0 & 1 & c \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \\ \text{Angle Test} \qquad \text{Angle Test}$$

$$\left(\begin{array}{ccc}
0 & a & b \\
0 & 1 & c \\
0 & 0 & \lambda
\end{array}\right)$$

$$\begin{pmatrix} \begin{array}{c|cccc} 0 & 0 & 0 \\ \hline 0 & 1 & c \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \qquad \begin{pmatrix} \begin{array}{c|cccc} 0 & a & 0 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \qquad \begin{pmatrix} \begin{array}{c|cccc} 0 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \\ 2 \times 2 \qquad 2 \times 2 \oplus 1 \times 1 \qquad 2 \times 2 \oplus 1 \times 1 \\ \\ \begin{pmatrix} \begin{array}{c|cccc} 0 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \qquad \begin{pmatrix} \begin{array}{c|cccc} 0 & 0 & b \\ 0 & 1 & c \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \\ \text{Angle Test} \qquad \text{Angle Test}$$

### Partial Isometries

### Definition

A matrix T is a partial isometry if there exists a unitary matrix U and an orthogonal projection P such that T = UP.

## Partial Isometries

#### Definition

A matrix T is a partial isometry if there exists a unitary matrix U and an orthogonal projection P such that T = UP.

### Proposition

Every  $3 \times 3$  partial isometry is UECSM.

### Partial Isometries

#### Definition

A matrix T is a partial isometry if there exists a unitary matrix U and an orthogonal projection P such that T = UP.

### Proposition

Every  $3 \times 3$  partial isometry is UECSM.

### Conjecture

Every  $3 \times 3$  UECSM is a rank 1 matrix, a  $2 \times 2 \oplus 1 \times 1$ , or some multiple of a partial isometry, plus some multiple of the identity matrix.



u221 \* u321 + 2 \* u222 \* u322 + 2 \* u231 \* u331 + 2 \* u232 \* u332 , 2 \* u111 \* u212 + 2 \* u131 \* u232 - 2 \* u122 \* u221 + 2 \* u231 \* u331 + 2 \* u331 +u121 \* u222 - 2 \* u112 \* u211 - 2 \* u132 \* u231, 2 \* u121 \* u322 - 2 \* u112 \* u311 - 2 \* u132 \* u331 + 2 \* u111 \* u312 + 2 \* u112 \* u311 - 2 \* u132 \* u331 + 2 \* u111 \* u312 + 2 \* u111 \* u11u131 \* u332 - 2 \* u122 \* u321, -2 \* u222 \* u321 + 2 \* u221 \* u322 - 2 \* u212 \* u311 - 2 \* u232 \* u331 + 2 \* u211 \* u312 + 2 \* u212 \* u311 - 2 \* u232 \* u331 + 2 \* u211 \* u312 + 2 \* u211 \* u311 + 2 $2 * u231 * u332, 1 - u111^2 - u112^2 - u121^2 - u121^2 - u121^2 - u131^2 - u132^2, 1 - u211^2 - u212^2 - u221^2 - u222^2 - u231^2 - u212^2 - u211^2 - u212^2 - u211^2 - u212^2 - u211^2 - u21^2 - u21^$  $u232^2, 1 - u311^2 - u312^2 - u321^2 - u322^2 - u331^2 - u332^2, -2 * s111 * u111 + 2 * s112 * u112 - 2 * s121 * u211 + 2 * s121 * u211$ s122 \* u212 - 2 \* s131 \* u311 + 2 \* s132 \* u312, 2 \* u111 \* a1 - 2 \* s111 \* u121 - 2 \* u112 \* a2 - 2 \* s121 \* u221 + 2 \* s112 \* a2 - 2 \* s121 \* u221 + 2 \* s112 \* a2 - 2 \* s121 \* u221 + 2 \* s112 \* a2 - 2 \* s121 \* u221 + 2 \* s122 \* u221 + 2 \* s12u321 + 2 \* u221, 2 \* u211 \* b1 - 2 \* u212 \* b2 - 2 \* s121 \* u131 - 2 \* u232 \* q2 + 2 \* u231 \* q1 - 2 \* u222 \* c2 + 2 \* u221 \* c1 - 2 \* u222 \* c2 + 2 \* u231 \* q1 - 2 \* u222 \* c2 + 2 \* u231 \* q1 - 2 \* u232 \* q2 + 2 \* u231 \* q1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* c2 + 2 \* u231 \* c1 - 2 \* u232 \* u23u331\*a1 - 2\*s131\*u131 + 2\*s232\*u232 - 2\*s231\*u231 + 2\*s132\*u132 - 2\*s331\*u331 + 2\*s332\*u332 + 2\*u321\*u331 + 2\*s332\*u332 + 2\*u321\*u331 + 2\*s332\*u332 + 2\*u332 + 2\*u35132\*u311. -2\*u122-2\*u111\*a2+2\*5111\*u122-2\*u112\*a1+2\*5131\*u322+2\*5132\*u321+2\*5112\*u121+2\*s122\*u221+2\*s121\*u222, -2\*u132\*q1-2\*u131\*q2-2\*u111\*b2-2\*u112\*b1-2\*u121\*c2-2\*u122\*u221 - 2 \* u211 \* a2 - 2 \* u212 \* a1 + 2 \* s121 \* u122 + 2 \* s122 \* u121 + 2 \* s221 \* u222 + 2 \* s232 \* u321, -2 \* u231 \* q2 - 2 \* u231 \* u231 \* q2 - 2 \* u231 \* u331 \* u332\*u211\*b2-2\*u221\*c2+2\*s221\*u232-2\*u232\*g1-2\*u222\*c1+2\*s231\*u332+2\*s222\*u231-2\*u212\*b1+2\*u221\*b2-2\*u221\*b2-2\*u221\*c2+2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u221\*b2-2\*u22\*b2-2\*u221\*b2-2\*u22\*b2-2\*u22\*b2-2\*u22\*b2-2\*u231 + 2\*s331\*u332 + 2\*s332\*u331 - 2\*u312\*b1 - 2\*u332\*a1 + 2\*s131\*u132 + 2\*s132\*u131 - 2\*u311\*b2



## To Paraphrase Richard Feynman:

Math is like sex. Sure, it may give some practical results, but that's not why we do it.