Towards a Classification of 3×3 *C*-Symmetric Matrices Jay Daigle Advisor: Stephan Garcia gjd02004@mymail.pomona.edu http://www.dci.pomona.edu/~jadagul Pomona College September 14, 2016 $$\left(\begin{array}{ccc} a & b & c \\ b & d & e \\ c & e & f \end{array}\right)$$ $$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$ $$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$ $$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$ $$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} \frac{1+\sqrt{3}i}{2} & 0 & 0 \\ 0 & \frac{1-\sqrt{3}i}{2} & 0 \\ 0 & 0 & 2 \end{pmatrix}$$ $$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$ $$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{3}i}{2} & 0 & 0 \\ 0 & \frac{1-\sqrt{3}i}{2} & 0 \\ 0 & 0 & 2 \end{pmatrix}$$ $$\begin{pmatrix} -5 & 0 & 4 \\ -4 & -2 & 2 \\ 1 & 4 & -3 \end{pmatrix}$$ $$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$ $$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{3}i}{2} & 0 & 0 \\ 0 & \frac{1-\sqrt{3}i}{2} & 0 \\ 0 & 0 & 2 \end{pmatrix}$$ $$\begin{pmatrix} -5 & 0 & 4 \\ -4 & -2 & 2 \\ 1 & 4 & -3 \end{pmatrix}$$ $$\begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix}$$ $$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1+\sqrt{3}i}{2} & 0 & 0 \\ 0 & \frac{1-\sqrt{3}i}{2} & 0 \\ 0 & 0 & 2 \end{pmatrix}$$ $$\begin{pmatrix} -5 & 0 & 4 \\ -4 & -2 & 2 \\ 1 & 4 & -3 \end{pmatrix}$$ #### Fact Every matrix is similar to a complex symmetric matrix. # Unitary Equivalence ### Unitary Equivalence #### Definition Let U be a $n \times n$ matrix. If U is an invertible isometry, then we say U is unitary. ### Unitary Equivalence #### Definition Let U be a $n \times n$ matrix. If U is an invertible isometry, then we say U is unitary. #### Definition If A and B are $n \times n$ matrices and $A = UBU^{-1}$ for some unitary matrix U, then A is unitarily equivalent to B. Every square matrix is similar to a complex symmetric matrix (CSM). - Every square matrix is similar to a complex symmetric matrix (CSM). - Not every square matrix is unitarily equivalent to a CSM (UECSM). - Every square matrix is similar to a complex symmetric matrix (CSM). - Not every square matrix is unitarily equivalent to a CSM (UECSM). - Develop techniques to tell the difference. - Every square matrix is similar to a complex symmetric matrix (CSM). - Not every square matrix is unitarily equivalent to a CSM (UECSM). - Develop techniques to tell the difference. - Classify 3 × 3 UECSM. Most useful invariants are similarity invariants. Most useful invariants are similarity invariants. $$det(A) = det(Q^{-1}BQ)$$ $$= det(Q^{-1}) det(B) det(Q)$$ $$= det(Q^{-1}) det(Q) det(B)$$ $$= det(I) det(B) = det(B)$$ Most useful invariants are similarity invariants. $$det(A) = det(Q^{-1}BQ)$$ $$= det(Q^{-1}) det(B) det(Q)$$ $$= det(Q^{-1}) det(Q) det(B)$$ $$= det(I) det(B) = det(B)$$ - Determinant - Trace - Eigenvalues - Rank - Minimum Polynomial - Jordan Form #### Definition If $T = (a_{ij})$ is a square complex matrix, then we say that $T^* = (\overline{a_{ji}})$ is its conjugate transpose. #### Definition If $T = (a_{ij})$ is a square complex matrix, then we say that $T^* = (\overline{a_{ji}})$ is its conjugate transpose. $$T = \begin{pmatrix} 1 & 6 & i \\ 2i & -3 + 4i & 4 - 3i \\ -2 & 5 & 3 \end{pmatrix}$$ #### Definition If $T = (a_{ij})$ is a square complex matrix, then we say that $T^* = (\overline{a_{ji}})$ is its conjugate transpose. $$T = \begin{pmatrix} 1 & 6 & i \\ 2i & -3 + 4i & 4 - 3i \\ -2 & 5 & 3 \end{pmatrix} \qquad T^* = \begin{pmatrix} 1 & -2i & -2 \\ 6 & -3 - 4i & 5 \\ -i & 4 + 3i & 3 \end{pmatrix}$$ #### Definition A conjugation C is a isometric antilinear involution. #### Definition A conjugation C is a isometric antilinear involution. • Isometric: leaves sizes and angles unchanged. #### Definition A conjugation C is a isometric antilinear involution. - Isometric: leaves sizes and angles unchanged. - Antilinear: $C(\lambda x) = \overline{\lambda} Cx$. #### Definition A conjugation C is a isometric antilinear involution. • Isometric: leaves sizes and angles unchanged. • Antilinear: $C(\lambda x) = \overline{\lambda} Cx$. • Involution: $C \circ C = I$. #### Definition A conjugation C is a isometric antilinear involution. - Isometric: leaves sizes and angles unchanged. - Antilinear: $C(\lambda x) = \overline{\lambda} Cx$. - Involution: $C \circ C = I$. #### Definition The standard conjugation J takes a vector to its conjugate: $$J(x_1, x_2, \ldots, x_n) = (\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n}).$$ # C-symmetry #### C-symmetry #### Definition We say a matrix T is C-symmetric if there exists a conjugation C such that $T = CT^*C$. ## *C*-symmetry #### Definition We say a matrix T is C-symmetric if there exists a conjugation C such that $T = CT^*C$. #### Theorem A matrix is UECSM if and only if it is C-symmetric for some conjugation C. • Every 2×2 matrix is UECSM. - Every 2×2 matrix is UECSM. - Rank 1 matrices are UECSM. - Every 2 × 2 matrix is UECSM. - Rank 1 matrices are UECSM. - Direct sum of UECSM is UECSM. # A Brief Review of Eigenvectors ## A Brief Review of Eigenvectors ### Definition Let T be a matrix. Then if there exists a vector v and a scalar λ such that $Tv - \lambda v = 0$, then we say that λ is an eigenvalue of T and v is an eigenvector with eigenvalue λ . ## A Brief Review of Eigenvectors ### Definition Let T be a matrix. Then if there exists a vector v and a scalar λ such that $Tv - \lambda v = 0$, then we say that λ is an eigenvalue of T and v is an eigenvector with eigenvalue λ . #### Definition Let T, v, λ be as above. If there exists a natural number n such that $(T - \lambda I)^n v = 0$ then v is a generalized eigenvector of T with eigenvalue λ . ### Fact T and T^* have conjugate eigenvalues. ### Fact T and T^* have conjugate eigenvalues. $$Tv = \lambda v \Rightarrow T^*u = \overline{\lambda}u.$$ #### **Fact** T and T^* have conjugate eigenvalues. $$Tv = \lambda v \Rightarrow T^*u = \overline{\lambda}u.$$ $$\lambda v = Tv = CT^*Cv$$ $$\overline{\lambda}(Cv) = C(\lambda v) = CTv = T^*(Cv)$$ Thus Cv is an eigenvector of T^* with eigenvalue $\overline{\lambda}$. #### **Fact** T and T^* have conjugate eigenvalues. $$Tv = \lambda v \Rightarrow T^*u = \overline{\lambda}u.$$ $$\lambda v = Tv = CT^*Cv$$ $$\overline{\lambda}(Cv) = C(\lambda v) = CTv = T^*(Cv)$$ Thus Cv is an eigenvector of T^* with eigenvalue $\overline{\lambda}$. Thus C must take eigenvectors of T to corresponding eigenvectors of T^* . • Unitary Equivalence is an equivalence relation. - Unitary Equivalence is an equivalence relation. - Which representative should we use? - Unitary Equivalence is an equivalence relation. - Which representative should we use? ### Schur's Theorem Every square matrix is unitarily equivalent to an upper triangular matrix. - Unitary Equivalence is an equivalence relation. - Which representative should we use? ### Schur's Theorem Every square matrix is unitarily equivalent to an upper triangular matrix. $$\left(\begin{array}{ccc} \lambda_1 & a & b \\ 0 & \lambda_2 & c \\ 0 & 0 & \lambda_3 \end{array}\right)$$ $$T = \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$ $$T = \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ $$u_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, u_1 = \begin{pmatrix} b \\ 0 \\ 1 \end{pmatrix}, v_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, v_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$ $$T = \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ $$u_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, u_1 = \begin{pmatrix} b \\ 0 \\ 1 \end{pmatrix}, v_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, v_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$ $$|b+0+0| = |0+0+0|$$ $$T = \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$ $$u_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, u_1 = \begin{pmatrix} b \\ 0 \\ 1 \end{pmatrix}, v_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, v_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$ $$|b+0+0| = |0+0+0|$$ $u_0 \to v_0, \ u_1 \to v_1, \ u_\lambda \to v_\lambda.$ ## Our Cases ## Our Cases $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{array}\right)$$ ### Our Cases $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{array}\right) \quad \left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{array}\right) \quad \left(\begin{array}{ccc} 0 & a & b \\ 0 & 1 & c \\ 0 & 0 & \lambda \end{array}\right)$$ $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{array}\right)$$ $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{array}\right)$$ $$\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$ Rank 1 $$\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$ $$\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$ $$\begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$ Rank 1 Rank 1 $$\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$ $$\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$ $$\begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$ $$\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$$ $$Rank 1 \qquad Rank 1 \qquad |a| = |c|$$ $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{array}\right)$$ $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{array}\right)$$ $$\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$ Rank 1 $2 \times 2 \oplus 1 \times 1$ $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{array}\right)$$ $$\left(\begin{array}{cccc} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{array}\right)$$ $$\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ Park 1 $$2 \times 2 \oplus 1 \times 1$$ And Task $$2 \times 2 \oplus 1 \times 1$$ $$\left(egin{array}{ccc} 0 & a & b \ 0 & 0 & 0 \ 0 & 0 & 1 \end{array} ight)$$ Angle Test $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{array}\right)$$ $$\begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$ $$\begin{pmatrix} 0 & a & 0 \\ 0 & 0 & 0 \\ \hline 0 & 0 & 1 \end{pmatrix}$$ $$2 \times 2 \oplus 1 \times 1$$ $$\left(\begin{array}{cccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$ Angle Test $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 1 \end{array}\right) \quad \left(\begin{array}{ccc} 0 & a & 0 \\ 0 & 0 & c \\ 0 & 0 & 1 \end{array}\right)$$ $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 1 & c \\ 0 & 0 & \lambda \end{array}\right)$$ $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 1 & c \\ 0 & 0 & \lambda \end{array}\right)$$ $$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & c \\ 0 & 0 & \lambda \end{pmatrix} \qquad \begin{pmatrix} 0 & a & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & \lambda \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$ $$2 \times 2 \qquad 2 \times 2 \oplus 1 \times 1 \qquad 2 \times 2 \oplus 1 \times 1$$ $$\begin{pmatrix} 0 & a & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & \lambda \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{pmatrix} \\ 2 \times 2 \oplus 1 \times 1 \qquad 2 \times 2 \oplus 1 \times 1$$ $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 1 & c \\ 0 & 0 & \lambda \end{array}\right)$$ $$\begin{pmatrix} \begin{array}{c|cccc} 0 & 0 & 0 \\ \hline 0 & 1 & c \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \qquad \begin{pmatrix} \begin{array}{c|cccc} 0 & a & 0 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \qquad \begin{pmatrix} \begin{array}{c|cccc} 0 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \\ 2 \times 2 \qquad 2 \times 2 \oplus 1 \times 1 \qquad 2 \times 2 \oplus 1 \times 1 \\ \\ \begin{pmatrix} \begin{array}{c|cccc} 0 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \qquad \begin{pmatrix} \begin{array}{c|cccc} 0 & 0 & b \\ 0 & 1 & c \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \\ \text{Angle Test} \qquad \text{Angle Test}$$ $$\left(\begin{array}{ccc} 0 & a & b \\ 0 & 1 & c \\ 0 & 0 & \lambda \end{array}\right)$$ $$\begin{pmatrix} \begin{array}{c|cccc} 0 & 0 & 0 \\ \hline 0 & 1 & c \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \qquad \begin{pmatrix} \begin{array}{c|cccc} 0 & a & 0 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \qquad \begin{pmatrix} \begin{array}{c|cccc} 0 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \\ 2 \times 2 \qquad 2 \times 2 \oplus 1 \times 1 \qquad 2 \times 2 \oplus 1 \times 1 \\ \\ \begin{pmatrix} \begin{array}{c|cccc} 0 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \qquad \begin{pmatrix} \begin{array}{c|cccc} 0 & 0 & b \\ 0 & 1 & c \\ 0 & 0 & \lambda \\ \end{array} \end{pmatrix} \\ \text{Angle Test} \qquad \text{Angle Test}$$ ### Partial Isometries ### Definition A matrix T is a partial isometry if there exists a unitary matrix U and an orthogonal projection P such that T = UP. ## Partial Isometries #### Definition A matrix T is a partial isometry if there exists a unitary matrix U and an orthogonal projection P such that T = UP. ### Proposition Every 3×3 partial isometry is UECSM. ### Partial Isometries #### Definition A matrix T is a partial isometry if there exists a unitary matrix U and an orthogonal projection P such that T = UP. ### Proposition Every 3×3 partial isometry is UECSM. ### Conjecture Every 3×3 UECSM is a rank 1 matrix, a $2 \times 2 \oplus 1 \times 1$, or some multiple of a partial isometry, plus some multiple of the identity matrix. u221 * u321 + 2 * u222 * u322 + 2 * u231 * u331 + 2 * u232 * u332 , 2 * u111 * u212 + 2 * u131 * u232 - 2 * u122 * u221 + 2 * u231 * u331 +u121 * u222 - 2 * u112 * u211 - 2 * u132 * u231, 2 * u121 * u322 - 2 * u112 * u311 - 2 * u132 * u331 + 2 * u111 * u312 + 2 * u112 * u311 - 2 * u132 * u331 + 2 * u111 * u312 u11u131 * u332 - 2 * u122 * u321, -2 * u222 * u321 + 2 * u221 * u322 - 2 * u212 * u311 - 2 * u232 * u331 + 2 * u211 * u312 + 2 * u212 * u311 - 2 * u232 * u331 + 2 * u211 * u312 u311 $2 * u231 * u332, 1 - u111^2 - u112^2 - u121^2 - u121^2 - u121^2 - u131^2 - u132^2, 1 - u211^2 - u212^2 - u221^2 - u222^2 - u231^2 - u212^2 - u211^2 - u212^2 - u211^2 - u212^2 - u211^2 u21^2 u21^$ $u232^2, 1 - u311^2 - u312^2 - u321^2 - u322^2 - u331^2 - u332^2, -2 * s111 * u111 + 2 * s112 * u112 - 2 * s121 * u211 + u211$ s122 * u212 - 2 * s131 * u311 + 2 * s132 * u312, 2 * u111 * a1 - 2 * s111 * u121 - 2 * u112 * a2 - 2 * s121 * u221 + 2 * s112 * a2 - 2 * s121 * u221 + 2 * s112 * a2 - 2 * s121 * u221 + 2 * s112 * a2 - 2 * s121 * u221 + 2 * s122 s12u321 + 2 * u221, 2 * u211 * b1 - 2 * u212 * b2 - 2 * s121 * u131 - 2 * u232 * q2 + 2 * u231 * q1 - 2 * u222 * c2 + 2 * u221 * c1 - 2 * u222 * c2 + 2 * u231 * q1 - 2 * u222 * c2 + 2 * u231 * q1 - 2 * u232 * q2 + 2 * u231 * q1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 * c2 + 2 * u231 * c1 - 2 * u232 u23u331*a1 - 2*s131*u131 + 2*s232*u232 - 2*s231*u231 + 2*s132*u132 - 2*s331*u331 + 2*s332*u332 + 2*u321*u331 + 2*s332*u332 + 2*u321*u331 + 2*s332*u332 + 2*u332 2*u35132*u311. -2*u122-2*u111*a2+2*5111*u122-2*u112*a1+2*5131*u322+2*5132*u321+2*5112*u121+2*s122*u221+2*s121*u222, -2*u132*q1-2*u131*q2-2*u111*b2-2*u112*b1-2*u121*c2-2*u122*u221 - 2 * u211 * a2 - 2 * u212 * a1 + 2 * s121 * u122 + 2 * s122 * u121 + 2 * s221 * u222 + 2 * s232 * u321, -2 * u231 * q2 - 2 u231 * q2 - 2 * u231 u331 u332*u211*b2-2*u221*c2+2*s221*u232-2*u232*g1-2*u222*c1+2*s231*u332+2*s222*u231-2*u212*b1+2*u221*b2-2*u221*b2-2*u221*c2+2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u221*b2-2*u22*b2-2*u221*b2-2*u22*b2-2*u22*b2-2*u22*b2-2*u231 + 2*s331*u332 + 2*s332*u331 - 2*u312*b1 - 2*u332*a1 + 2*s131*u132 + 2*s132*u131 - 2*u311*b2 ## To Paraphrase Richard Feynman: Math is like sex. Sure, it may give some practical results, but that's not why we do it.