An Introduction to Special Values of *L*-Functions

Jay Daigle jdaigle@caltech.edu http://jaydaigle.net

California Institute of Technology

May 30, 2014

Finding Prime Numbers

	2	3	4	5	6	7	8	9	10	Prime numbers
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67	68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92	93	94	95	96	97	98	99	100	
101	102	103	104	105	106	107	108	109	110	
111	112	113	114	115	116	117	118	119	120	

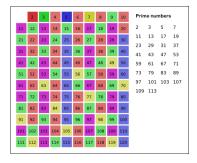


Figure : Sieve of Eratosthenes Sebastian Koppehel / CC-BY-SA-3.0

Counting prime numbers between 10 and 100

- Every composite in [10, 100] is divisible by a prime $p \le 10$.
- $(1 \frac{1}{2})(1 \frac{1}{3})(1 \frac{1}{5})(1 \frac{1}{7}) = \frac{1 \cdot 2 \cdot 4 \cdot 6}{2 \cdot 3 \cdot 5 \cdot 7} = \frac{8}{35} \approx .23$
- $.23 \cdot 90 \approx 21$. Primes between 10 and 100:

There are twenty-one!

Prime Number Theorem

Let $\pi(x)$ be the number of prime numbers less than or equal to x. Then

$$\lim_{x \to +\infty} \frac{\pi(x)\ln(x)}{x} = 1.$$

Counting prime numbers

$$(1 - \frac{1}{2})(1 - \frac{1}{3})(1 - \frac{1}{5})(1 - \frac{1}{7})\dots = \prod_{p \text{ prime}} \left(1 - \frac{1}{p}\right)$$
$$\left(1 - \frac{1}{p}\right)^{-1} = 1 + \frac{1}{p} + \frac{1}{2p} + \dots$$

$$\prod_{p \text{ prime}} \left(1 - \frac{1}{p}\right)^{-1} = \prod_{p \text{ prime}} \left(1 + \frac{1}{p} + \frac{1}{2p} + \dots\right) \qquad = \sum_{n \ge 1} \frac{1}{n}$$

This is the harmonic series, which doesn't converge (and order matters!).

The Riemann zeta series

Idea (from calculus): We can look at behavior of functions near bad points.

Definition

The Riemann zeta function is the function of one complex variable

$$\zeta(s) = \sum_{n \geq 1} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}$$

- Converges absolutely for Re(s) > 1.
- Want to study behavior near s = 1.

Meromorphic continuations

Definition: Meromorphic Continuation

■ A function $f: \mathbb{C} \to \mathbb{C}$ is meromorphic if it can be represented as the ratio of two power series:

$$f(z) = \frac{\sum_{n \ge 0} a_n (z - z_0)^n}{\sum_{n \ge 0} b_n (z - z_0)^n}$$

■ If $g: U \to \mathbb{C}$ is a meromorphic function, and $f: \mathbb{C} \to \mathbb{C}$ is a meromorphic function with f(u) = g(u) for all $u \in U$, we say f is the (unique!) meromorphic continuation of g.

The functional equation and the Riemann zeta function

We observe:

The functional equation

$$\zeta(s) = 2^s \pi^{s-1} \sin(\pi s/2) \left(\int_0^{+\infty} x^{-s} e^{-x} dx \right) \zeta(1-s).$$

Theorem

- The Riemann zeta series has a meromorphic continuation to the complex plane, with a single pole at s = 1.
- $\lim_{s\to 1} (s-1)\zeta(s) = 1.$

The Riemann Zeta Function

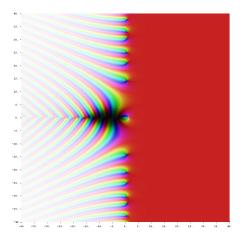


Figure: Values in black are close to 0 Hue gives the complex argument, with red being totally real

Special Values of the Riemann Zeta Function

- The prime number theorem is true if and only if $\zeta(s) \neq 0$ for all Re(s) = 1.
- $\zeta(-n) = -\frac{B_{n+1}}{n+1}.$
- lacksquare $\zeta(-2n)=0$ for every $n\in\mathbb{N}$ ("trivial zeros").

Fun fact

$$-\frac{1}{12} = \zeta(-1) = \sum_{n>0} \frac{1}{n^{-1}} = 1 + 2 + 3 + 4 + \dots$$

Zeroes of the Riemann Zeta Function

Zeroes of ζ control how far primes are from where we "expect" them.

Riemann zeros control:

- The error term in the prime number theorem.
- The growth of the Möbius function and other counting functions.
- The size of prime gaps.

The Riemann Hypothesis

What do we know?

- If $\zeta(s) = 0$ then either s = -2n, or 0 < Re(s) < 1 ("critical strip").
- **Zeroes** are symmetric about the "critical line" $Re(s) = \frac{1}{2}$.
- The function $\zeta(\frac{1}{2}+it)$ is zero for infinitely many $t\in\mathbb{R}$ (Hardy 1914).

Riemann Hypothesis (Riemann 1859)

If $\zeta(s)=0$ then either s=-2n, or s is on the critical line $\mathrm{Re}(s)=\frac{1}{2}$.

Fermat's "Last Theorem"

Theorem (Wiles 1994)

Suppose $x^n + y^n = z^n$ for integers x, y, z. Then $n \le 2, x = 0$ or y = 0.

Cauchy, Lamé 1847

- $z^n = x^n + y^n = (x+y)(x+\zeta_n y)(x+\zeta_n^2 y)\dots(x+\zeta_n^{n-1} y)$
- These products are all relatively prime and divide z^n , and so by unique factorization are all nth powers.
- "Infinite descent": use this solution to generate a smaller solution.

Kummer 1844

$$\begin{array}{l} (1+\zeta_{23}^2+\zeta_{23}^4+\zeta_{23}^5+\zeta_{23}^6+\zeta_{23}^{10}+\zeta_{23}^{11})(1+\zeta_{23}+\zeta_{23}^5+\zeta_{23}^6+\zeta_{23}^7+\zeta_{23}^9+\zeta_{23}^{11}) \\ = 2(\zeta_{23}^5+\zeta_{23}^7+\zeta_{23}^9+\zeta_{23}^{10}+\zeta_{23}^{10}+3\zeta_{23}^{11}+\zeta_{23}^{12}+\zeta_{23}^{13}+\zeta_{23}^{15}+\zeta_{23}^{16}+\zeta_{23}^{17}+\zeta_{23}^{17}) \end{array}$$

Fields and Field Extensions

- A field: you can do addition, multiplication, and division.
- $\blacksquare \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}, \mathbb{Q}_p, \mathbb{Q}(t).$

Definition

- If F and K are fields with $F \subset K$ then K is a field extension of F.
- K is a vector field over F and we write $[K:F] = \dim_F(K)$ for the degree of the extension.
- A number field is a finite extension of \mathbb{Q} . All number fields embed into \mathbb{C} .
- \blacksquare $\mathbb{C} = \mathbb{R}(i)$.
- $\mathbb{Q}(i), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{2}, i)$
- $\mathbb{Q}(\sqrt{D}:D\in\mathbb{Z})$

Algebraic Extensions

Definition

- We say that $\alpha \in K$ is algebraic over F if there's a polynomial $f \in F[x]$ with $f(\alpha) = 0$.
- K/F is an algebraic extension if every $\alpha \in K$ is algebraic over F.

Normal Basis Theorem

- Every number field is algebraic over Q.
- If F is a number field then $F = \mathbb{Q}(\alpha)$ for some $\alpha \in F$.

Algebraic Integers

Definition

- Let K be a number field, and let $\alpha \in K$. We say α is an algebraic integer if $f(\alpha) = 0$ for some $f \in \mathbb{Z}[x]$.
- The ring of integers \mathcal{O}_K is the set of all algebraic integers in K.

Q	\mathbb{Z}
$\mathbb{Q}(i)$	$\mathbb{Z}[i]$
$\mathbb{Q}(\zeta_n)$	$\mathbb{Z}[\zeta_n]$
$\mathbb{Q}(\sqrt{-3})$	$\mathbb{Z}\left[\frac{-1+\sqrt{-3}}{2}\right]$

Factorization

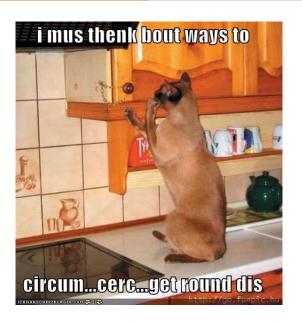
Fundamental Theorem of Arithmetic

Every integer factors uniquely up to order and sign as a product of prime numbers.

$$6 = 2 \cdot 3 = 3 \cdot 2 = -3 \cdot -2$$

What about in number fields?

- Unique factorization in $\mathbb{Z}[i], \mathbb{Z}[\sqrt{-2}], \mathbb{Z}[\zeta_{19}]$
- $6 = (1 \sqrt{-5}) (1 + \sqrt{-5}) \in \mathbb{Z}[\sqrt{-5}].$
- $\begin{array}{l} \blacksquare \ \ (1+\zeta_{23}^2+\zeta_{23}^4+\zeta_{23}^5+\zeta_{23}^6+\zeta_{23}^{10}+\zeta_{23}^{11})(1+\zeta_{23}+\zeta_{23}^5+\zeta_{23}^6+\zeta_{23}^7+\zeta_{23}^9+\zeta_{23}^{11}) \\ = 2(\zeta_{23}^5+\zeta_{23}^7+\zeta_{23}^9+\zeta_{23}^{10}+\zeta_{23}^{10}+\zeta_{23}^{11}+\zeta_{23}^{12}+\zeta_{23}^{13}+\zeta_{23}^{15}+\zeta_{23}^{16}+\zeta_{23}^{17}) \in \mathbb{Z}[\zeta_{23}] \end{array}$



Prime Ideals and Unique Factorization

Definition

- Ideal: if a or $b \in I$ then $ab \in I$.
- Prime ideal: If $ab \in I$ then $a \in I$ or $b \in I$.

Unique Factorization Theorem

Every ideal factors uniquely as a product of prime ideals.

Ideal Classes

Principal Ideals

An ideal is principal if it's generated by one element.

e.g.
$$(2), (3), (2 - \sqrt{-5} + i).$$
 $(0), (1).$

Not principal: $(2, 1 + \sqrt{-17}), (2, 1 + \sqrt{-29}), (2, \sqrt{-6}).$

Definition

We say two ideals $\mathfrak{p}, \mathfrak{q} \subset K$ are equivalent if there are $a, b \in K$ such that $(a)\mathfrak{p} = (b)\mathfrak{q}$.

An equivalence class of ideals is called an ideal class. The (finite) group of ideal classes is the class group of K, and its size h_K is the class number.

Ideal Norms

$$\prod_{\mathfrak{p}\subset\mathcal{O}_K}\frac{1}{1-\mathfrak{p}^{-s}}\qquad ??$$

- It's unclear what it means to divide by an ideal.
- Number fields don't embed in C canonically.

Definition

The index of \mathfrak{p} is $\|\mathfrak{p}\| = \mathcal{O}_K/\mathfrak{p}$. Equivalently, $N(\mathfrak{p}) = \mathbb{Z} \cap \prod_{\sigma \in G} \sigma(\mathfrak{p})$.

The Dedekind Zeta Function

Definition

The Dedekind zeta function for K is

$$\zeta_K(s) = \prod_{\mathfrak{p} \subset \mathcal{O}_F} \frac{1}{1 - \|\mathfrak{p}\|^{-s}} = \sum_{I \subset \mathcal{O}_F} \|I\|^{-s} = \sum_{n \ge 1} \frac{j_n}{n^s}.$$

- $\zeta_K(-2n) = 0.$
- lacksquare $\zeta_K(-n)=0$ unless K is totally real. Otherwise $\zeta_K(-n)\in\mathbb{Q}$.
- Generalized Riemann Hypothesis: All nontrivial zeros in the critical strip 0 < Re(s) < 1 are on the critical line $\text{Re}(s) = \frac{1}{2}$.

The Best Proof Technique of All Time

Gauss's Class Number Conjecture

- Gauss (1798) conjectured that as the discriminant D of an imaginary quadratic field $\mathbb{Q}(\sqrt{D})$ approaches $-\infty$, the class number $h(D) \to +\infty$.
- Hecke 1918: If the GRH is true, then the conjecture holds.
- Heilbronn 1932: If the GRH is false, then the conjecture holds.

The Analytic Class Number Formula

Class Number Formula

$$\lim_{s \to 1} (s-1)\zeta_K(s) = \frac{2^{r_1} (2\pi)^{r_2} h_K \operatorname{Reg}_K}{w_K \cdot \sqrt{|D_K|}}.$$

Do we need all that information? Sadly, yes. Bosma and Smit (2002) found pairs of fields with different class numbers but the same zeta function.

The Rank Formula

- A finitely generated abelian group has a finite set of generators.
- Isomorphic to $\mathbb{Z}^r \oplus \bigoplus \mathbb{Z}/n\mathbb{Z}$.
- The rank is the integer r.

Rank Formula

The group of units of \mathcal{O}_F is a finitely generated abelian group.

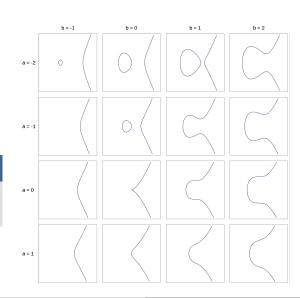
$$\lim_{s \to 0} s^{-r} \zeta_K(s) = -\frac{h_K \operatorname{Reg}_K}{w(K)}.$$

Elliptic Curves

- A smooth genus 1 curve with a rational point
- $y^{2} + a_{1}xy + a_{3}y =$ $x^{3} + a_{2}x^{2} + a_{4}x + a_{6}$
- $y^2 = x^3 + ax + b$

Key Question

How many rational points are there?



Group Law on Elliptic Curves

The rational points on an elliptic curve form an abelian group.

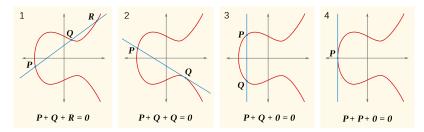


Figure: The group law on elliptic curves Emmanuel Boutet / CC-BY-SA-3.0

Elliptic Curves over Finite Fields

- Let $E: y^2 = x^3 + ax + b$ for $a, b \in \mathbb{F}_q$.
- \blacksquare $E(\mathbb{F}_q)$ is finite.
- $E(\mathbb{F}_q)$ is either cyclic or the product of two cyclic groups.

Theorem (Hasse 1933)

$$|\#E(\mathbb{F}_1) - (q+1)| < 2\sqrt{q}.$$

Elliptic Curves over a number field

- Weak Mordell-Weil Theorem: E(K)/mE(K) is finite for any m>1.
- lacktriangle Mordell-Weil Theorem: E(K) is a finitely generated abelian group.
- Merel: For each K there are only finitely many possible torsion subgroups for E(K).
- Conjecture: Rank is unbounded.

Fact (Elkies 2009)

The curve

$$\begin{aligned} y^2 + xy + y \\ &= x^3 - x^2 + 31368015812338065133318565292206590792820353345x \\ &+ 302038802698566087335643188429543498624522041683874493555186 \end{aligned}$$

has rank 19.

Elliptic Curves over Q

- Mazur: The torsion component of $E(\mathbb{Q})$ can only be $\mathbb{Z}/N\mathbb{Z}$ for $N=1,2,\ldots,10,12$ or $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2N\mathbb{Z}$ for N=1,2,3,4.
- Still expect rank to be unbounded.
- However, we expect 50% of curves to be rank 0 and 50% to be rank 1. (100% doesn't mean all of an infinite set)

The Hasse-Weil L-function

Definition

- E has good reduction at p if E/p is an elliptic curve.
- If E has good reduction at p, set $a_p = p + 1 \#(E/p)(\mathbb{F}_p)$, and $L_p(E,s) = 1 a_p p^{-s} + p^{1-2s}$.
- $L(E,s) = \prod_{p} L_p(s,E)^{-1}.$

Facts

- **Easy fact:** L(E, s) converges absolutely for Re(s) > 3/2.
- Very, very hard fact: L(E,s) has a meromorphic continuation to the complex plane (Breuil-Conrad-Diamond-Taylor 2001) .

Birch and Swinnerton-Dyer Conjecture

Conjecture (Birch and Swinnerton-Dyer 1965)

- **Rank conjecture:** $\operatorname{rk} E(\mathbb{Q}) = \operatorname{ord}_{s=1} L(E, s)$
- Formula:

$$\lim_{s \to 1} (s-1)^r L(E,s) = \Omega_E \frac{\operatorname{Reg}(e) \cdot |\operatorname{III}(E)|}{|E(\mathbb{Q})|_{tors}} \prod_{\ell} c_{\ell}$$

■ Tate: "This remarkable conjecture relates the behaviour of a function L, at a point where it is not at present known to be defined, to the order of a group III, which is not known to be finite."

What do we know?

"Old" results

- Gross-Zagier (1986): A modular elliptic curve with analytic rank 1 has rank at least one.
- Kolyvagin (1989): A modular elliptic curve with analytic rank 0 has rank 0, and a modular curve with analytic rank 1 has rank 1.
- Breuil et al (2001): All rational elliptic curves are modular.

This year (Bhargava, Shankar, Skinner, Urban, Zhang)

- Average rank is $\leq .885$
- At least 83.75% have rank 0 or 1
- At least 66.48% satisfy BSD.

Bonus: Fermat's Last Theorem

- Frey 1982: If $a^n + b^n = c^n$ then $y^2 = x(x a^n)(x + b^n)$ is an elliptic curve.
- Serre 1985, Ribet 1986: This curve is semistable and not modular.
- Wiles 1995: All semistable elliptic curves over Q are modular.
- Breuil-Conrad-Diamond-Taylor 2001: All elliptic curves over Q are modular.

Generalizations of L-functions

- Dirichlet L-series $L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$ for Dirichlet characters $\chi: \mathbb{Z} \to \mathbb{C}$.
- Artin L-functions, from a linear representation of a Galois group.
- Hecke L-functions attached to modular forms or Hecke characters
- p-adic L-functions, from p-adic interpolation or from Galois modules
- Hasse-Weil *L*-functions for algebraic varieties
- L-functions from automorphic representations
- Conjecture: these are all basically the same.

L-functions on motives

If X is a smooth projective variety and i,j are integers, a motive $M=h^i(X)(j)$ is essentially X together with cohomological data about X. To every motive we can associate:

- \blacksquare A representation $M_l=H^i_{et}(X_{\overline{\mathbb{Q}}},\mathbb{Q}_l)(j)$
- A polynomial $P_p(T) = \det(1 Fr_p^{-1} \cdot T | M_l^{I_p}) \in \mathbb{Q}_l[T]$, conjectured to be independent of l.
- An L function $L(M,s) = \prod_p P_p(p^{-s})^{-1}$ analytic for $\mathrm{Re}(s) \gg 0$.
- We conjecture that L(M,s) can be meromorphically continued to s=0,and study the Taylor expansion

$$L(M,s) = L^*(M,s)s^{r(M)} + \dots$$

The Tamagawa number conjecture on Tate motives

