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Prime numbers and the Riemann zeta function

Finding Prime Numbers

Figure : Sieve of Eratosthenes
Sebastian Koppehel / CC-BY-SA-3.0
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Prime numbers and the Riemann zeta function

Counting prime numbers between 10 and 100

Every composite in [10, 100] is divisible by a prime p ≤ 10.
(1− 1

2)(1− 1
3)(1− 1

5)(1− 1
7) = 1·2·4·6

2·3·5·7 = 8
35 ≈ .23

.23 · 90 ≈ 21. Primes between 10 and 100:

11, 13, 17, 19, 23, 29, 31,

37, 41, 43, 47, 53, 59, 61,

67, 71, 73, 79, 83, 89, 97

There are twenty-one!

Prime Number Theorem
Let π(x) be the number of prime numbers less than or equal to x. Then

lim
x→+∞

π(x) ln(x)

x
= 1.
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Prime numbers and the Riemann zeta function

Counting prime numbers

(1− 1
2)(1− 1

3)(1− 1
5)(1− 1

7) . . . =
∏

p prime

(
1− 1

p

)
(

1− 1

p

)−1
= 1 +

1

p
+

1

2p
+ . . .

∏
p prime

(
1− 1

p

)−1
=

∏
p prime

(
1 +

1

p
+

1

2p
+ . . .

)
=
∑
n≥1

1

n

This is the harmonic series, which doesn’t converge (and order
matters!).

Jay Daigle (California Institute of Technology) L-functions May 30, 2014 5 / 43



Prime numbers and the Riemann zeta function

The Riemann zeta series

Idea (from calculus): We can look at behavior of functions near
bad points.

Definition
The Riemann zeta function is the function of one complex variable

ζ(s) =
∑
n≥1

1

ns
=

∏
p prime

(
1− 1

ps

)−1
=

∏
p prime

1

1− p−s

Converges absolutely for Re(s) > 1.
Want to study behavior near s = 1.

Jay Daigle (California Institute of Technology) L-functions May 30, 2014 6 / 43



Prime numbers and the Riemann zeta function

Meromorphic continuations

Definition: Meromorphic Continuation

A function f : C→ C is meromorphic if it can be represented as
the ratio of two power series:

f(z) =

∑
n≥0 an(z − z0)n∑
n≥0 bn(z − z0)n

If g : U → C is a meromorphic function, and f : C→ C is a
meromorphic function with f(u) = g(u) for all u ∈ U , we say f is
the (unique!) meromorphic continuation of g.
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Prime numbers and the Riemann zeta function

The functional equation and the Riemann zeta function

We observe:

The functional equation

ζ(s) = 2sπs−1 sin(πs/2)

(∫ +∞

0
x−se−xdx

)
ζ(1− s).

ζ(s) = 2sπs−1 sin(πs/2)Γ(1− s)ζ(1− s).

Theorem

The Riemann zeta series has a meromorphic contiuation to the
complex plane, with a single pole at s = 1.
lims→1(s− 1)ζ(s) = 1.
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Prime numbers and the Riemann zeta function

The Riemann Zeta Function

Figure : Values in black are close to 0
Hue gives the complex argument, with red being totally real
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Prime numbers and the Riemann zeta function

Special Values of the Riemann Zeta Function

The prime number theorem is true if and only if ζ(s) 6= 0 for all
Re(s) = 1.
ζ(−n) = −Bn+1

n+1 .
ζ(−2n) = 0 for every n ∈ N ( “trivial zeros”).

Fun fact

− 1

12
= ζ(−1) =

∑
n≥0

1
n−1 = 1 + 2 + 3 + 4 + . . .
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Prime numbers and the Riemann zeta function

Zeroes of the Riemann Zeta Function

Zeroes of ζ control how far primes are from where we “expect” them.

Riemann zeros control:

The error term in the prime number theorem.
The growth of the Möbius function and other counting functions.
The size of prime gaps.
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Prime numbers and the Riemann zeta function

The Riemann Hypothesis

What do we know?

If ζ(s) = 0 then either s = −2n, or 0 < Re(s) < 1 (“critical strip”).
Zeroes are symmetric about the “critical line” Re(s) = 1

2 .
The function ζ(12 + it) is zero for infinitely many t ∈ R (Hardy
1914).

Riemann Hypothesis (Riemann 1859)

If ζ(s) = 0 then either s = −2n, or s is on the critical line Re(s) = 1
2 .
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Principal ideals and the Dedekind zeta function
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Principal ideals and the Dedekind zeta function

Fermat’s “Last Theorem”

Theorem (Wiles 1994)

Suppose xn + yn = zn for integers x, y, z. Then n ≤ 2, x = 0 or y = 0.

Cauchy, Lamé 1847

zn = xn + yn = (x+ y)(x+ ζny)(x+ ζ2ny) . . . (x+ ζn−1n y)

These products are all relatively prime and divide zn, and so by
unique factorization are all nth powers.
“Infinite descent”: use this solution to generate a smaller solution.

Kummer 1844
(1 + ζ223 + ζ423 + ζ523 + ζ623 + ζ1023 + ζ1123 )(1 + ζ23 + ζ523 + ζ623 + ζ723 + ζ923 + ζ1123 )
= 2(ζ523 + ζ723 + ζ923 + ζ1023 + 3ζ1123 + ζ1223 + ζ1323 + ζ1523 + ζ1623 + ζ1723 )
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Principal ideals and the Dedekind zeta function
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Principal ideals and the Dedekind zeta function

Fields and Field Extensions

A field: you can do addition, multiplication, and division.
Q, R, C, Z/pZ, Qp, Q(t).

Definition

If F and K are fields with F ⊂ K then K is a field extension of F .
K is a vector field over F and we write [K : F ] = dimF (K) for the
degree of the extension.
A number field is a finite extension of Q. All number fields embed
into C.

C = R(i).
Q(i), Q(

√
2), Q(

√
2, i)

Q(e2πi/n) = Q(ζn)

Q(
√
D : D ∈ Z)
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Principal ideals and the Dedekind zeta function

Algebraic Extensions

Definition

We say that α ∈ K is algebraic over F if there’s a polynomial
f ∈ F [x] with f(α) = 0.
K/F is an algebraic extension if every α ∈ K is algebraic over F .

Normal Basis Theorem

Every number field is algebraic over Q.
If F is a number field then F = Q(α) for some α ∈ F .
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Principal ideals and the Dedekind zeta function

Algebraic Integers

Definition

Let K be a number field, and let α ∈ K. We say α is an algebraic
integer if f(α) = 0 for some f ∈ Z[x].
The ring of integers OK is the set of all algebraic integers in K.

Q Z
Q(i) Z[i]

Q(ζn) Z[ζn]

Q(
√
−3) Z[−1+

√
−3

2 ]
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Principal ideals and the Dedekind zeta function

Factorization

Fundamental Theorem of Arithmetic
Every integer factors uniquely up to order and sign as a product of
prime numbers.

6 = 2 · 3 = 3 · 2 = −3 · −2

What about in number fields?
Unique factorization in Z[i],Z[

√
−2],Z[ζ19]

6 =
(
1−
√
−5
) (

1 +
√
−5
)
∈ Z[
√
−5].

(1+ζ223+ζ423+ζ523+ζ623+ζ1023 +ζ1123 )(1+ζ23+ζ523+ζ623+ζ723+ζ923+ζ1123 )
= 2(ζ523 + ζ723 + ζ923 + ζ1023 + 3ζ1123 + ζ1223 + ζ1323 + ζ1523 + ζ1623 + ζ1723 ) ∈ Z[ζ23]
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Principal ideals and the Dedekind zeta function
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Principal ideals and the Dedekind zeta function

Prime Ideals and Unique Factorization

Definition

Ideal: if a or b ∈ I then ab ∈ I.
Prime ideal: If ab ∈ I then a ∈ I or b ∈ I.

Unique Factorization Theorem

Every ideal factors uniquely as a product of prime ideals.
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Principal ideals and the Dedekind zeta function

Ideal Classes

Principal Ideals

An ideal is principal if it’s generated by one element.
e.g. (2), (3), (2−

√
−5 + i). (0), (1).

Not principal: (2, 1 +
√
−17), (2, 1 +

√
−29), (2,

√
−6).

Definition
We say two ideals p, q ⊂ K are equivalent if there are a, b ∈ K such
that (a)p = (b)q.
An equivalence class of ideals is called an ideal class. The (finite)
group of ideal classes is the class group of K, and its size hK is the
class number.

Jay Daigle (California Institute of Technology) L-functions May 30, 2014 22 / 43



Principal ideals and the Dedekind zeta function

Ideal Norms

∏
p⊂OK

1

1− p−s
??

It’s unclear what it means to divide by an ideal.
Number fields don’t embed in C canonically.

Definition
The index of p is ‖p‖ = OK/p. Equivalently, N(p) = Z ∩

∏
σ∈G σ(p).
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Principal ideals and the Dedekind zeta function

The Dedekind Zeta Function

Definition
The Dedekind zeta function for K is

ζK(s) =
∏

p⊂OF

1

1− ‖p‖−s
=
∑
I⊂OF

‖I‖−s =
∑
n≥1

jn
ns
.

ζK(−2n) = 0.
ζK(−n) = 0 unless K is totally real. Otherwise ζK(−n) ∈ Q.
Generalized Riemann Hypothesis: All nontrivial zeros in the
critical strip 0 < Re(s) < 1 are on the critical line Re(s) = 1

2 .
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Principal ideals and the Dedekind zeta function

The Best Proof Technique of All Time

Gauss’s Class Number Conjecture

Gauss (1798) conjectured that as the discriminant D of an
imaginary quadratic field Q(

√
D) approaches −∞, the class

number h(D)→ +∞.
Hecke 1918: If the GRH is true, then the conjecture holds.
Heilbronn 1932: If the GRH is false, then the conjecture holds.
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Principal ideals and the Dedekind zeta function

The Analytic Class Number Formula

Class Number Formula

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2hK RegK

wK ·
√
|DK |

.

Do we need all that information? Sadly, yes. Bosma and Smit (2002)
found pairs of fields with different class numbers but the same zeta
function.
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Principal ideals and the Dedekind zeta function

The Rank Formula

A finitely generated abelian group has a finite set of generators.
Isomorphic to Zr ⊕

⊕
Z/nZ.

The rank is the integer r.

Rank Formula
The group of units of OF is a finitely generated abelian group.

lim
s→0

s−rζK(s) = −hK RegK
w(K)

.
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Elliptic and the Birch and Swinnerton-Dyer conjecture
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Elliptic and the Birch and Swinnerton-Dyer conjecture

Elliptic Curves

A smooth genus 1
curve with a rational
point
y2 + a1xy + a3y =
x3 + a2x

2 + a4x+ a6

y2 = x3 + ax+ b

Key Question

How many rational
points are there?
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Elliptic and the Birch and Swinnerton-Dyer conjecture

Group Law on Elliptic Curves

The rational points on an elliptic curve form an abelian group.

Figure : The group law on elliptic curves
Emmanuel Boutet / CC-BY-SA-3.0
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Elliptic and the Birch and Swinnerton-Dyer conjecture

Elliptic Curves over Finite Fields

Let E : y2 = x3 + ax+ b for a, b ∈ Fq.
E(Fq) is finite.
E(Fq) is either cyclic or the product of two cyclic groups.

Theorem (Hasse 1933)

|#E(F1)− (q + 1)| < 2
√
q.
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Elliptic and the Birch and Swinnerton-Dyer conjecture

Elliptic Curves over a number field

Weak Mordell-Weil Theorem: E(K)/mE(K) is finite for any
m > 1.
Mordell-Weil Theorem: E(K) is a finitely generated abelian group.
Merel: For each K there are only finitely many possible torsion
subgroups for E(K).
Conjecture: Rank is unbounded.

Fact (Elkies 2009)

The curve

y2 + xy + y

= x3 − x2 + 31368015812338065133318565292206590792820353345x

+ 302038802698566087335643188429543498624522041683874493555186

has rank 19.
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Elliptic and the Birch and Swinnerton-Dyer conjecture

Elliptic Curves over Q

Mazur: The torsion component of E(Q) can only be Z/NZ for
N = 1, 2, . . . , 10, 12 or Z/2Z× Z/2NZ for N = 1, 2, 3, 4.
Still expect rank to be unbounded.
However, we expect 50% of curves to be rank 0 and 50% to be
rank 1. (100% doesn’t mean all of an infinite set)
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Elliptic and the Birch and Swinnerton-Dyer conjecture

The Hasse-Weil L-function

Definition

E has good reduction at p if E/p is an elliptic curve.
If E has good reduction at p, set ap = p+ 1−#(E/p)(Fp), and
Lp(E, s) = 1− app−s + p1−2s.
L(E, s) =

∏
p Lp(s, E)−1.

Facts

Easy fact: L(E, s) converges absolutely for Re(s) > 3/2.
Very, very hard fact: L(E, s) has a meromorphic continuation to
the complex plane ( Breuil-Conrad-Diamond-Taylor 2001) .
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Elliptic and the Birch and Swinnerton-Dyer conjecture

Birch and Swinnerton-Dyer Conjecture

Conjecture (Birch and Swinnerton-Dyer 1965)

Rank conjecture: rkE(Q) = ords=1 L(E, s)

Formula:

lim
s→1

(s− 1)rL(E, s) = ΩE
Reg(e) · |X(E)|
|E(Q)|tors

∏
`

c`

Tate: “This remarkable conjecture relates the behaviour of a
function L, at a point where it is not at present known to be
defined, to the order of a group X, which is not known to be finite.”
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Elliptic and the Birch and Swinnerton-Dyer conjecture

What do we know?

“Old” results

Gross-Zagier (1986): A modular elliptic curve with analytic rank 1
has rank at least one.
Kolyvagin (1989): A modular elliptic curve with analytic rank 0 has
rank 0, and a modular curve with analytic rank 1 has rank 1.
Breuil et al (2001): All rational elliptic curves are modular.

This year (Bhargava, Shankar, Skinner, Urban, Zhang)

Average rank is ≤ .885

At least 83.75% have rank 0 or 1
At least 66.48% satisfy BSD.
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Elliptic and the Birch and Swinnerton-Dyer conjecture
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Elliptic and the Birch and Swinnerton-Dyer conjecture

Bonus: Fermat’s Last Theorem

Frey 1982: If an + bn = cn then y2 = x(x− an)(x+ bn) is an elliptic
curve.
Serre 1985, Ribet 1986: This curve is semistable and not modular.
Wiles 1995: All semistable elliptic curves over Q are modular.
Breuil-Conrad-Diamond-Taylor 2001: All elliptic curves over Q are
modular.
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And Beyond!
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And Beyond!

Generalizations of L-functions

Dirichlet L-series L(s, χ) =
∑∞

n=1
χ(n)
ns for Dirichlet characters

χ : Z→ C.
Artin L-functions, from a linear representation of a Galois group.
Hecke L-functions attached to modular forms or Hecke characters
p-adic L-functions, from p-adic interpolation or from Galois
modules
Hasse-Weil L-functions for algebraic varieties
L-functions from automorphic representations
Conjecture: these are all basically the same.
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And Beyond!

L-functions on motives

If X is a smooth projective variety and i, j are integers, a motive
M = hi(X)(j) is essentially X together with cohomological data about
X. To every motive we can associate:

A representation Ml = H i
et(XQ,Ql)(j)

A polynomial Pp(T ) = det(1− Fr−1p · T |M
Ip
l ) ∈ Ql[T ], conjectured

to be independent of l.
An L function L(M, s) =

∏
p Pp(p

−s)−1 analytic for Re(s)� 0.
We conjecture that L(M, s) can be meromorphically continued to
s = 0,and study the Taylor expansion

L(M, s) = L∗(M, s)sr(M) + . . .
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And Beyond!

The Tamagawa number conjecture on Tate motives

H1(K,Zp(r))tf �
� // H1(K,Qp(r))

exp∗Qp(1−r)

∼=
&&
K

H1(K,Zp(r))

55 55

H1
Iw(K,Qp(1))

pr0,r

55 55

Exp∗Qp

∼= ((

K((t))
dr−1

dtr−1

∣∣
t=0

88

H1
Iw(K,Zp(1))

66
pr0,r

OOOO

Exp∗Zp
∼= ((

Bψ=1
K (1)

T0φ−n
66

Ṽ Aψ=1
K (1)

mod p
oo 1−φ //

66

OF JπKψ=0 ΛF · ξ(1 + π)

A(K∞) = lim←−m,nK
×
n /(K

×
n )p

m

∼=

00

Ê×K

∇ log

:: ::

∼=oo AN=1
K

∇ log

∼=

77

mod p

∼=oo

V
?�

OO

Pψ=p
−1

F

?�

∇ ρ1

OO

1−φ/p
τ0

//
mod p◦∇

oo OF JπKψ=0

∇

OO

ΛF · ξ(1 + π)

Û = lim←−m,nO
×
Kn
/(O×Kn

)p
m

?�

OO

1 + πKkJπKK
?�

OO

∇ log

:: ::

∼=oo OF JπKN=1
logmod p

∼=oo

log

∼=

66

?�

OO
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And Beyond!
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