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8 Inverse Functions and Exponentials

8.1 Inverse Functions

Remember we started out by saying that a function is a process: it takes an input and

returns an output. Sometimes we want to undo this process. This is in fact a natural

question; “What do I have to do if I want to get X” is a pretty common thought process.

So our goal is: given a function f , given f(x), can we find x?

Definition 8.1. If f is a function and (g ◦ f)(x) = x for every x in the domain of f , then

we say g is an inverse of f .

Example 8.2. • If f(x) = x then g(y) = y is an inverse to f .

• If f(x) = 5x+ 3 then g(y) = (y − 3)/5 is an inverse to f .

• If f(x) = x3 then g(y) = 3
√
y is an inverse to f .

Remark 8.3. A given function f has at most one inverse—if f has an inverse at all, then

that means “for any y, find the x where f(x) = y” is a well-defined rule.

If g is an inverse to f , then the domain of g is the image of f and the domain of f is the

image of g.

Unfortunately, we can’t always find these inverses. For instance, if you know that x2 = 9,

you don’t know for sure what x is: it could be 3 or −3. Similarly, if you know sin(x) = 0,

then x could be nπ for any integer n. The fundamental problem here is that there are some

outputs that are generated by more than one input.

Definition 8.4. A function f is 1-1 or one-to-one (or injective) if, whenever f(a) = f(b),

we know that a = b.

Example 8.5. Functions which are 1-1:

• f(x) = x. If f(a) = f(b) then a = b by definition.

• f(x) = x3. If f(a) = f(b) then a3 = b3, and then (a/b)3 = 1 so a/b = 1 and a = b.

• f(x) =
√
x. If f(a) = f(b) then

√
a =
√
b so |a| = |b|. But a, b ≥ 0 since they’re in the

domain of f , and thus a = b.

Functions which are not 1-1:
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• f(x) = x2, since f(−1) = f(1).

• f(x) = |x|, since f(−2) = f(2).

• sin(x), since sin(0) = sin(π).

• f(x) = 3, since f(a) = f(b) = 3 for any real numbers a and b.

However, we can often force a function to be one-to-one by restricting its domain.

Example 8.6. • The function f(x) = x2 on the domain [0,+∞) is 1-1. If f(a) = f(b)

then a2 = b2 so a = ±b. But both a, b ≥ 0 so a = b.

• The function sin(x) is 1-1 on the domain [−π/2, π/2]. If we look at the unit circle, we

see that as x varies from −π/2 to π/2, the y coordinate on the unit circle is always

increasing, and so never repeats itself.

This might lead us to think graphically about what the idea of 1-1-ness means:

Proposition 8.7 (Horizontal Line Test). A function f is 1-1 if and only if any horizontal

line will intersect its graph in at most one point.

It’s reasonably clear that every function with an inverse must be one-to-one, since oth-

erwise there’s not a unique answer to the inverse question. Less obvious is that being 1-1 is

enough to be invertible.

Proposition 8.8. If f is a 1-1 function with domain A and image B, then there is a function

f−1 with domain B and image A which is an inverse to f .

We can find this inverse by writing the equation y = f(x) and solving for x as a function

of y. Finding an inverse for f is also a good way to prove that f is one-to-one.

Example 8.9. Let f(x) = x4 with domain (−∞, 0]. Then we have y = x4 ⇒ x = ± 4
√
y.

But we know that x < 0 so x = − 4
√
y, and thus g(y) = − y

√
y is an inverse for f .

Graphically, the graph of f−1 looks like the graph of f flipped acroos the line y = x,

which makes sense, since a point (x, y) on the graph of f should correspond to a point (y, x)

on the graph of f−1. In fact, the Horizontal Line Test mentioned earlier is basically the

Vertical Line Test applied to the inverse function.

Example 8.10. Take f(x) = x3 − x. This function is clearly not one-to-one, since f(1) =

f(0) = f(−1) = 0. But we can split it up into intervals where it is one-to-one. Looking at

the graph, it seems natural to split it up at the critical points. And this suggests we should

use calculus to study our inverse function problem.
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8.1.1 Calculus of inverse functions

Now that we understand inverse functions as functions, we’d like to see what calculus can

tell us about them.

Proposition 8.11. If f is one-to-one and continuous at a, then f−1 is continuous at f(a).

If f is one-to-one and continuous, then f−1 is continuous.

We’d really like to know about the derivatives of inverse functions. We can work out what

they are with some quick sketched arguments, and then can prove the answer rigorously once

we know what we’re looking for.

First, the argument by “it looks nice in the notation”: we can rephrase this theorem as

saying that
dy

dx
=

1
dx
dy

.

Second, if we already know that both functions are differentiable, we can use implicit differ-

entiation:

f−1(f(x)) = x

(f−1)′(f(x)) · f ′(x) = 1

(f−1)′(f(x)) =
1

f ′(x)
.

Writing x = f−1(a), or equivalently a = f(x), gives our statement.

Theorem 8.12 (Inverse Function Theorem). If f is a one-to-one differentiable function,

and f ′(f−1(a)) 6= 0, then (f−1)′(a) = 1
f ′(f−1(a))

.

Proof. Set y = f−1(x) and b = f−1(a). Then

(f−1)′(a) = lim
x→a

f−1(x)− f−1(a)

x− a

= lim
y→b

y − b
f(y)− f(b)

= lim
y→b

1

f(y)− f(b)

y − b

=
1

f ′(b)
=

1

f ′(f(a))
.
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Example 8.13. Let f(x) = xn on [0,+∞); then f−1(x) = n
√
x. Our formula gives

(f−1)′(a) =
1

f ′(f−1(x))
=

1

f ′( n
√

(a))

=
1

n( n
√

(a))n−1
=

1

na(n−1)/n
=

1

n
a(1−n)/n =

1

n
a

1
n
−1.

Though at first this didn’t look like our original answer, it is the same as the formula we

had before.

Example 8.14. Let f(x) = 3
√

5x2 + 7. What is (f−1)′(3)?

Well, we have (f−1)′(3) = 1
f ′(f−1(3))

. We know that f ′(x) = 1
3
(5x2 + 7)−2/3 · 10x, and we

can work out that f(2) = 3
√

20 + 7 = 3 (by plugging in small integers until one works). Thus

f−1(3) = 2, and so we have

(f−1)′(3) =
1

1
3
(27)−2/3 · 20

=
3 · 9
20

=
27

20
.

8.2 The exponential and the logarithm

Back in the first weeks of the course, we discussed the exponential functions. It’s simple to

define xn when n is a positive integer, as x · x · · · · · x. It’s now clear that we defined x1/n as

the inverse function to xn, with domain restricted to positive numbers in the case n is even

and thus xn is not one-to-one. But can we make sense of xr where r is any real number?

What would it mean to write 2
√
2?

The answer would presumably be between 2 and 4. And also between 21.4 and 21.5.

And between 21.41 and 21.42. In fact, this is how we will define 2
√
2. It turns out that

there will be exactly one number greater than 21, 21.4, 21.41, 21.414, 21.4142, . . . and less than

22, 21.5, 21.42, 21.415, 21.4143, . . . .

Definition 8.15. If r is any real number, and a is a positive real number, we define ar =

limx→r a
x for x varying over the rational numbers. We say that a is the base and r is the

exponent.

Remark 8.16. We can’t actually raise a negative real number to an irrational power. The limit

would vary over x with even denominator, and ax is not defined if x has even denominator

and a < 0.

Proposition 8.17. The exponential function fa(x) = ax is well-defined for any r when

a > 0, and is continuous on all real numbers. Further, it satisfies the exponential laws:
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• ax+y = axay

• ax−y = ax

ay

• (ax)y = axy

• (ab)x = axbx.

Proposition 8.18. If a > 1, then limx→+∞ a
x = +∞ and limx→−∞ a

x = 0.

If 0 < a < 1 then limx→+∞ a
x = 0 and limx→−∞ a

x = +∞.

Proof. Both of these can be seen by considering cases where x is an integer.

There is a number which we will see works much better as a base for the exponential

function than any other. This is the number

e = lim
x→0

(1 + x)1/x.

It’s possible to prove that this limit exists, but not incredibly easy. It happens that e ≈
2.71828. We often write exp for the exponential function with base e; that is, exp(x) = ex.

Remark 8.19. The number e was discovered by Jacob Bernoulli in the context of compound

interest. If your interest rate is r and it’s compounded n times a year, then the growth rate

per year is (1 + r
n
)1/n. If the interest is “compounded continuously,” your money grows at

a rate equal to the limit of this expression as n goes to +∞—which is e. The number was

named by Leonhard Euler (hence the “e”) when he used it for logarithms.

We’d like to compute the derivative of exp, and also of ax for a positive real number a.

This is a bit difficult to do directly. So we will, as usual, cheat.

8.2.1 Logarithms

The exponential function f(x) = ax is one-to-one, since if f(x) = f(y), then ax = ay, which

means that ax−y = 1 and so x− y = 0. So ax must have an inverse function.

Definition 8.20. The logarithmic function with base a, written loga, is the inverse function

to ax. It has domain (0,+∞), and its image is all real numbers. We often write ln for loge.

Thus if a > 0, we see that loga(a
x) = x for every real x, and aloga(x) = x for every x > 0.

Example 8.21. • log3(9) = 2.

• log2(8) = 3
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• loga(1) = 0 for any a > 0.

Proposition 8.22. If a > 1, then limx→+∞ loga(x) = +∞ and limx→−+ loga(x) = −∞.

The logarithm also has a number of properties corresponding to the exponential laws:

Proposition 8.23. • loga(xy) = loga(x) + loga(y)

• loga(
x
y
) = loga(x)− loga(y)

• loga(x
r) = r loga(x) for any real number r.

Example 8.24. • ln(a) + 1
2

ln(b) = ln(a) + ln(b)1/2 = ln(a
√
b).

• Solve e5−3s = 10. We have that 5− 3x = ln 10 and so x = 5−ln 10
3

.

Remark 8.25. These properties are actually historically why the logarithm was originally

important. Before calculators, people doing difficult computational work had to work by

hand. Adding five digit numbers is much, much easier than multiplying them. So engineers

would take the log of the numbers, add them together, and then exponentiate. This was all

done with the help of massive books called log tables that would tell you the logarithm of a

given number. Slide rules are essentially a way of making the log tables portable; but they

were superseded by pocket calculators.

There is one more important logarithmic formula, corresponding to the exponential law

I left out:

Proposition 8.26 (change of base). For any positive number a 6= 1, we have loga(x) =
ln(x)

ln(a)
.

Proof. exp(loga(x) · ln(a)) = aloga(x) = x, so loga(x) · ln(a) = ln(x).

This allows us to convert logs in any base to logs in another base.

Example 8.27. What is log2 10? By the change of base formula, we have log2(10) = ln 10
ln 2

.

ln 10 ≈ 2.3 and ln 2 ≈ .7, so log2 10 ≈ 2.3/.7 ≈ 23/7.
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8.3 Derivatives of exponentials and logs

Now we’re ready to start computing derivatives. Recall that e = limx→0(1 + x)1/x.

Proposition 8.28. The function f(x) = loga(x) is differentiable, with derivative f ′(x) =
1
x

loga e.

Proof.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

loga(x+ h)− loga(x)

h

= lim
h→0

loga((x+ h)/x))

h

= lim
h→0

loga(1 + h
x
)

h

=
1

x
lim
h→0

x

h
loga(1 +

h

x
)

=
1

x
lim
h→0

loga

(
(1 +

h

x
)x/h

)
=

1

x
loga

(
lim
h→0

(
1 +

h

x

) 1
h/x

)
=

1

x
loga(e)

Corollary 8.29. If f(x) = loga(x) then f ′(x) = 1
x ln a

.

Proof. By the change of base formula, loga(e) = ln(e)
ln(a)

.

Corollary 8.30. ln′(x) = 1
x
.

Remark 8.31. An alternate path to discover the natural logarithm is to ask “what is the

function whose derivative is 1/x?” We will mention this line of thought briefly at the end of

class.

Example 8.32. • Let f(x) = ln(x3 + 1). Then f ′(x) = 1
x3+1
· 3x2.

• Let g(x) = loga(cos(x)). Then g′(x) = 1
cos(x) ln(a)

· (− sin(x)) = − tan(x)/ ln(a).

• If h(x) = ln(|x|) then h′(x) = 1/x if x > 0 and h′(x) = (−1/x) · (−1) = 1/x if x < 0.

So h′(x) = 1
x
.
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We can sometimes use logarithms and implicit differentiation to make difficult differen-

tiation problems easier, just as we use them to simplify difficult arithmetic problems.

Example 8.33. We wish to find the derivative of y =
x3/4
√
x2 + 1

(3x+ 2)5
.

ln y =
3

4
ln(x) +

1

2
ln(x2 + 1)− 5 ln(3x+ 2)

1

y

dy

dx
=

3

4x
+

2x

2x2 + 2
− 3 · 5

3x+ 2

dy

dx
= y

(
3

4x
+

x

x2 + 1
− 15

3x+ 2

)
=
x3/4
√
x2 + 1

(3x+ 2)5

(
3

4x
+

x

x2 + 1
− 15

3x+ 2

)
.

Example 8.34 (Power Rule). If r is a real number and f(x) = xr, then

y = xr

ln |y| = r ln |x|
1

y

dy

dx
= r

1

x
dy

dx
= r

y

x
= rxr−1.

And finally, we can use the logarithmic derivatives to figure out the derivative of exp.

Proposition 8.35. If f(x) = ax for a > 0, then f is differentiable and f ′(x) = ax ln a.

Proof.

y = ax

ln |y| = x ln |a|
1

y

dy

dx
= ln a

dy

dx
= y ln a = ax ln a.

Corollary 8.36. exp′(x) = exp(x).

Example 8.37. • If f(x) = esin(x) then f ′(x) = esin(x) · cos(x).

• If g(x) = 5x
2+1 then g′(x) = ln(5)5x

2+1 · 2x.
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• If h(x) = xx we have to be very careful—the obvious approaches don’t actually work.

But logarithmically:

y = xx

ln |y| = x ln |x|
1

y

dy

dx
= ln |x|+ x

x
= ln |x|+ 1

dy

dx
= xx(ln |x|+ 1).

So h′(x) = (ln |x|+ 1)xx.

You can get the same result by writing h(x) = ex ln(x), and thus h′(x) = ex ln(x)(ln(x) +

1) = xx(ln(x) + 1).

8.4 Inverse Trigonometric Functions

We can invert some polynomials, and we can invert exponential functions. The other very

common sort of function to work with is a trigonometric function, and we’d like to find

inverses to these as well.

As a straightforward question, we cannot invert the trigonometric functions because they

are all periodic, and thus not one-to-one. For instance, sin(0) = sin(π) = sin(2π) = sin(nπ)

for any integer n.

However, sometimes a function is invertible if you restrict its domain enough, e.g. to be-

tween two critical points. In this section we make canonical domain choices for the trigono-

metric functions such that they are invertible.

Definition 8.38. If −1 ≤ x ≤ 1, we define arcsin(x) = sin−1(x) = y where sin(y) = x and

−π/2 ≤ y ≤ π/2.

arcsin has a domain of [−1, 1] and a range of [−π/2, π/2].

Example 8.39. We can determine that arcsin(−
√

3/2) = −π/3 since sin(−π/3) = −
√

3/2.

(Of course, sin(5π/3) = −
√

3/2 as well, but 5π/3 > π/2).

With more cleverness, we can calculate cos(arcsin(1/3)). Suppose θ = arcsin(1/3). Then

θ is the angle of a triangle with opposite side of lenght 1 and hypotenuse of length 3; using the

Pythagorean theorem we determine that the other side has length
√

8 = 2
√

2. Since cos(θ)

is the length of the adjacent side over the hypotenuse, we have cos(arcsin(1/3)) = 2
√

2/3.

We can make similar definitions for inverse cosine and inverse tangent functions. We do

have to be careful about the precise domains and images.
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Definition 8.40. If −1 ≤ x ≤ 1, we define arccos(x) = cos−1(x) = y where cos(y) = x and

0 ≤ y ≤ π. This function has domain [−1, 1] and range [0, π].

If x is a real number, we define arctan(x) = tan−1(x) = y where tan(y) = x and −π/2 <
y < π/2. This function has domain (−∞,+∞) and image (−π/2, π/2).

limx→+∞ arctan(x) = π/2 and limx→−∞ arctan(x) = −π/2.

sin and cos and tan are all differentiable functions, so by the Inverse Function Theorem,

so are arcsin and arccos and arctan, at least most of the time.

Proposition 8.41. • arcsin′(x) = 1√
1−x2

• arccos′(x) = −1√
1−x2

• arctan′(x) = 1
1+x2

.

Proof. There are two approaches to proving these facts. One involves trigonometric identi-

ties, and the other involves thinking about triangles. They both involve implicit differentia-

tion.

Suppose y = arcsin(x). Then sin(y) = x and thus cos(y) dy
dx

= 1. Then we have dy
dx

= 1
cos(y)

.

From here, we can say two things. One is that cos(y) =
√

1− sin2(y) =
√

1− x2, using

the trigonometric identity that cos2(y) + sin2(y) = 1 and being careful about sign choices.

I find it easier to think the following thing: if y = arcsin(x) then y is the angle of a

triangle where the opposite side has length x and the hypotenuse has length 1. Then the

other side has length
√

1− x2, so cos(y) =
√
1−x2
1

=
√

1− x2.
Note we got the same answer both ways, and they both involved basically the same facts;

the identity sin2(y) + cos2(y) = 1 holds precisely because of the triangle argument. Either

way you want to think of it is fine with me.

We can do the same with arccos(x). cos(y) = x, so dy
dx

= −1
sin(y)

= − 1√
1−x2 .

arctan is slightly trickier. tan(y) = x so sec2(y) dy
dx

= 1, and thus we have dy
dx

= cos2(y).

Again, we can use the identity 1 + tan2(y) = sec2(y), but if we don’t remember that we

can see that y is the angle of a triangle with opposite side x and adjacent side 1, and hence

hypotenuse
√

1 + x2. Then cos(y) = 1√
1+x2

and so arctan′(x) = cos2(y) = 1
1+x2

.

Example 8.42. What is arcsin′(.75)? 1√
1−9/16

= 1√
7/16

.

What is arctan′(ex)? 1
1+e2x

· ex.
What is arccos′(x2 + 2x+ 3)? 1√

1−(x2+2x+3)2
· (2x+ 2).
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8.5 L’Hôpital’s Rule

We often find ourselves wanting to evaluate limits of “indeterminate form”: that is, the limit

of a quotient whose numerator and denominator both approach 0 or both approach ±∞. In

the past we’ve used various tricks to work out such limits, but today we develop a new and

widely-applicable tool. This tool is especially useful for dealing with limits involving ln or

exp.

Theorem 8.43 (L’Hôpital’s Rule). Suppose f and g are differentiable, and g′(x) 6= 0 near

a, except possibly at a. Suppose either limx→a f(x) = limx→a g(x) = 0 or limx→a f(x) =

limx→a g(x) = ±∞. (In other words, the limit limx→a
f(x)
g(x)

is an indeterminate form). Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if the limit on the right exists.

Remark 8.44. Note that L’Hôpital’s Rule only applies to limits of indeterminate form.

Proof. We won’t prove this fully, but we will prove it in the case where f(a) = g(a) = 0,

g′(a) 6= 0, and f ′ and g′ are continuous at a.

lim
x→a

f(x)

g(x)
= lim

x→a

f(x)− f(a)

g(x)− g(a)

= lim
x→a

(f(x)− f(a))(x− a)

(g(x)− g(a))(x− a)

= lim
x→a

f(x)−f(a)
x−a

g(x)−g(a)
x−a

=
f ′(a)

g′(a)
= lim

x→a

f ′(x)

g′(x)
.

Example 8.45.

lim
x→3

x2 − 4x+ 3

x2 − 2x− 3
= lim

x→3

2x− 4

2x− 2
=

2

4
=

1

2
.

lim
x→0

1− cos(x)

sin(x)
= lim

x→0

sin(x)

cos(x)
=

0

1
= 0.

lim
x→1

lnx

x− 1
= lim

x→0

1/x

1
= 1.
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Sometimes we have to apply L’Hôpital’s rule more than once to get the results we want.

lim
x→0

tanx− x
x3

= lim
x→0

sec2(x)− 1

3x2

= lim
x→0

2 sec2(x) tan(x)

6x
= lim

x→0

tanx

3x

= lim
x→0

sec2(x)

3
=

1

3
.

lim
x→0

ex − 1− x
x2

= lim
x→0

ex − 1

2x
= lim

x→0

ex

2
=

1

2
.

We can also use L’Hôpital’s rule to evaluate limits at infinity.

Example 8.46.

lim
x→±∞

x2 + 5x+ 3

x2 + 7x− 2
= lim

x→±∞

2x+ 5

2x+ 7

= lim
x→±∞

2

2
= 1. lim

x→+∞

ln(x)

x
= lim

x→+∞

1/x

1
= 0.

lim
x→+∞

ex

x
= lim

x→+∞

ex

1
= +∞.

In fact, it’s not too hard to see, using L’Hôpital’s Rule, that limx→+∞
ex

xn
= +∞ and

limx→+∞
ln(x)
xn

= 0.

Remember that L’Hôpital’s rule only applies if we start with an indeterminate form.

Example 8.47.

lim
x→π

sin(x)

1− cos(x)
6= cos(x)

sin(x)
= ±∞

lim
x→π

sin(x)

1− cos(x)
=

0

1− (−1)
= 0.

A more dangerous example:

lim
x→0

ex − 1− x
x3

= lim
x→0

ex − 1

3x2
= lim

x→0

ex

6x

You might think we should use L’Hôpital’s rule again here; that would give limx→0
ex

6
= 1/6.

But the top goes to 1 and the bottom goes to 0, so this is not an indeterminate form! The

true limit is ±∞.

And sometimes L’Hôpital’s rule doesn’t alwasy work the way we’d like it to, just “because

it doesn’t.”
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Example 8.48.

lim
x→±∞

x√
x2 + 1

= lim
x→±∞

1
x√
x2+1

= lim
x→±∞

√
x2 + 1

x

But here if we’re clever we can observe that if the limit exists, then(
lim

x→±∞

x√
x2 + 1

)2

= 1

lim
x→±∞

x√
x2 + 1

= ±1.

We can often use L’Hôpital’s rule to compute limits of other indeterminate forms with

a bit of cleverness. Recall the “minor” indeterminate forms are 1∞,∞−∞, 00, 0∞, 0 · ∞.

Products can obviously be rewritten as quotients, and sums or differences can often be

combined into something by collecting common denominators. Exponents can be turned

into ratios by means of logarithms.

Example 8.49.

lim
x→π/2

sec(x)− tan(x) = lim
x→π/2

(
1

cos(x)
− sin(x)

cos(x)

)
= lim

x→π/2

1− sin(x)

cos(x)

= lim
x→π/2

− cos(x)

− sin(x)
=

0

1
= 0.

lim
x→0

cot(2x) sin(6x) = lim
x→0

sin(6x) cos(2x)

sin(2x)
= 1 · lim

x→0

sin(6x)

sin(2x)

= lim
x→0

6 cos(6x)

2 cos(2x)
= 3.

lim
x→1

x1/(1−x) = exp

(
lim
x→1

lnx

1− x

)
= exp

(
lim
x→1

1/x

−1

)
= lim

x→1
e−1/x = 1/e.

8.6 [Bonus Material] Exponential Growth and Differential Equa-

tions

When we’re doing mathematical modelling, it’s often useful to write down an equation that

relates a quantity of one thing to a rate of change—that is, a derivative—of something

else. Often we have an unknown function, but we know something about its derivative An

equation like this is called a differential equation. There are many techniques of math used
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to start with a differential equation and determine the original function. (See for instance

Math 341 and Math 342 for Oxy’s courses specifically on differential equations).

Here we will study a very common kind of differential equation called exponential growth.

Exponential growth arises when the rate of change of a variable is proportional to the current

size of that variable. This is often true of population dynamics, for instance; if 2% of people

reproduce in a given year, then the rate of change of the population is 1/50 of the number

of people in it. This also comes up in nuclear decay, economic growth, interest on bank

accounts, and many other contexts.

Mathematically, we represent this situation with the following differential equation:

dy

dt
= ky.

That is, the rate of change of y is equal to y times some constant which we customarily label

k. k is sometimes called the “rate of growth” or “rate of decay”.

It’s not difficult to see that y(t) = Cekt satisfies this differential equation for any constant

C. (If nothing else, you could probably guess from the name “exponential growth”). It’s

more difficult—and requires tools of integral calculus—to show convincingly that these are

the only functions that satisfy the differential equation of exponential growth.

Remark 8.50. The theory of solving differential equations is large, but there are some others

you can probably solve already. How many different types of functions can you come up

with that solve y′′ = ky? This equation governs the motion of things like pendulums and

weights on a spring.

Hint: in addition to exponential functions, you might also want to think about trigono-

metric functions.

Example 8.51 (Population Growth). Let P (t) be the size of a population of animals or

people or Tribbles at time t. In the absence of resource restrictions, the population will grow

at a rate dP
dt

= kP (t), where k is the rate of growth. Then we must have P (t) = Cekt. What

is C? Well, if we evaluate at 0, we see that P (0) = Cek0 = C, so C is the level of the

population at time t = 0.

The total population of the world was 3 billion people in 1960, and 4 billion in about

1975. Setting t = 0 to be 1960 and fitting this to our model, we have: Cek0 = 3 and

Ce15k = 4. Thus we must have C = 3, and then e15k = 4/3 implies that 15k = ln(4/3) and

so k = ln(4/3)/15. If we want to estimate global population in 2020, this gives us

P (60) = 3 · e60·ln(4/3)/15 = 3 · e4 ln(4/3) = 3 · (4/3)4 ≈ 9.48.
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(Actual estimates put it at 7.7 billion, because population growth has been leveling off).

Now let’s use our model to estimate when the population will reach 12 billion. We want

12 = 3 · et ln(4/3)/15 (1)

4 =

(
4

3

)t/15
(2)

log4/3 4 = t/15 (3)

15
ln(4)

ln(4/3)
= t (4)

72.3 ≈ t (5)

So our model predicts that the world’s population will reach 12 billion in about 2032.

Example 8.52 (Compound Interest). Exponential growth often turns up in the context of

economic growth and interest. Suppose you invest $100 in a bank account paying 3% interest

a year. Then after t years you will have 100 · (1.03)t dollars in the bank account. It’s easy

to compute how much money you’ll have after t years. For instance, after three years you

will have $109 and after 20 years you will have $180.

Often interest is “compounded” more often, meaning that you get some fraction of it

every few months. Interest that is compounded quarterly—four times a year—pays you

.75% of your current balance four times a year, so after t years you will have 100 · (1.0075)4t

dollars. After three years you will still have $109, and after 20 years you will have $182.

Note that your money has increased—slightly.

We can compound more often; in general, if your interest rate is r and you compound n

times a year, then your total money after t years will be

M = M0(1 +
r

n
)nt,

where M0 is the amount of money you started with.

In the real economy, transactions are constantly happening and the economy is (usually)

constantly growing. Jacob Bernoulli asked what would happen if your interest compounded

continuously—that is, what happens in the limit, as n goes to +∞.

M(t) = lim
n→+∞

M0

(
1 +

r

n

)nt
= M0 lim

n→+∞

((
1 +

r

n

)n/r)
= M0

(
lim

n→+∞

(
1 +

r

n

)n/r)rt
= M0e

rt.
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And now you see (one reason) why e is considered a “natural” base for the exponential map.

With this, we can ask how long it will take for us to have $200 if our interest is com-

pounded continuously. We have

200 = 100e.03t

2 = e.03t

ln(2) = .03t

23 = t

so it will take about 23 years to double our money.

Remark 8.53. We know that ln(2) = .693 · · · ≈ .7. This gives us the useful rule of thumb

that if your interest rate is r, it will take about 70/r years to double your investment.

Example 8.54 (Radioactive Decay). Radioactive substances decay randomly; each atom

has a 50% chance of decaying over a given period of time. (This time is called the half-life).

This means that at any given time, the decay rate of an amount S of a radioactive substance

is proportional to the amount of subtance; that is, we can write dS
dt

= kS. This gives us that

S = S0e
kt where S0 is the amout of radioactive substance at time t = 0.

The half-life of Radium-226 is 1590 years. How much of a 100g mass of radium will be

left after 1000 years?

We want to find the value of the constant k. We know that S(0) = 100 and that

S(1590) = 50. This gives us that

100 = Cek·0 ⇒ C = 100

50 = Cek·1590 50 = 100ek·1590

1

2
= ek·1590 ln(1/2) = 1590k

ln(1)− ln(2) = 1590k
− ln(2)

1590
= k.

This tells us that

S(t) = 100e
−t ln(2)
1590 .

Thus

S(1000) = 100e
−1000 ln(2)

1590 ≈ 100e−.436 ≈ 64.7g.

So after 100 years we will have 64.7 g of radium-226 left. This should pass a sanity check,

since it will take us 1590 years to get to 50.
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Another question: When will we reach 30g?

We write

30 = 100e
−t ln(2)
1590

ln(3/10) =
−t ln(2)

1590

1590(ln(3/10)) = −t ln(2)

−1590(ln(3/10)/ ln(2)) = t

−1590(−1.2/.7) ≈ t

2762 ≈ t

So we will be down to 30g of radium-226 after about 2762 years. This again seems reasonable:

it should take a bit less than 3180 years to reach 30g.
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