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2 Prime Numbers

2.1 Primes and factorizations

For further reading on the material in this subsection, consult Rosen 3.1; PMF 3.2,

Stein 1.1.1, 1.1.3.

We’ve talked about relatively prime–when a number shares no divisors with another

number. Is it possible to have a number that is absolutely prime–it has no common divisors

with any number?

Well, not really. After all, a number has common divisors with itself. And it has common

divisors with any of its multiples. But we can almost make this work.

Definition 2.1. A natural number n > 1 is prime if it is not divisible by any natural

numbers other than 1 and itself.

A natural number n > 1 that is not prime is composite.

Example 2.2. 2, 3, 5, 11, 97, 127 are all prime.

4, 8, 57, 91, 255 are all composite.

Remark 2.3. 1 is neither prime nor composite, by definition. During this course we will see

how this continually makes definitions and theorems simpler to state.

Remark 2.4. It’s perfectly reasonable to talk about negative numbers being prime or compos-

ite; in this context −2 and −3 would be prime, −4 composite, and −1 neither (technically,

a “unit”). However, none of our references do so. We will mostly restrict ourselves to posi-

tive integers, but on occasion may (perhaps inadvertently) abuse our terminology to discuss

negative primes.

Exercise 2.5. Let p be a prime and n and integer such that p does not divide n. Prove that

gcd(p, n) = 1.

We said on the first day that a major theme of this course will be understanding the

distribution of the prime numbers. We will finish this section by proving that there are

infinitely many prime numbers, which is the first major result on this subject.

Lemma 2.6. Every integer greater than 1 can be written as a product of primes.

This is a very important theorem (and in fact is half of the Fundamental Theorem of

Arithmetic, which we will discuss later in this section). We can prove this either using the

well-ordering property, or using strong induction. Since these are both important techniques,

I will present both proofs.
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Proof by well-ordering. Suppose (for contradiction) that there is an integer greater than 1

with no prime factors. Then the set of all such integers must have a least element, by the

well-ordering property. So let n be the smallest integer > 1 that cannot be written as a

product of primes.

If n is prime, then it can be written as a product of 1 prime; thus n must be composite.

Thus it must have some other divisor, and we can write n = ab with 1 < a, b < n.

Since 1 < a, b < n and n is the smallest integer that cannot be written as a product of

primes, we know that a and b can both be written as products of primes. Since n = ab we

can write n as a product of primes, yielding a contradiction.

Proof by induction. Let n > 1 be a number, and suppose the lemma holds for every k < n.

We consider two cases:

Suppose n is prime. Then n can be written as a product of one prime, n.

Now suppose n > 1 is not prime. Then n is composite, and we can write n = ab for

1 < a, b < n. Then by our inductive hypothesis, a and b can both be written as a product

of primes, since 1 < a, b < n.

But n = ab and a and b can be written as a product of primes, so n can also be written

as a product of primes.

Question for the reader: where is the base case here?

Remark 2.7. This is stronger than Lemma 3.1 in Rosen. It is proved later, after Lemma 3.5

in Rosen, instead. But 3.1 is a clear corollary of this lemma, and the proofs are essentially

the same.

Theorem 2.8 (Euclid). There are infinitely many primes.

Proof. Suppose there are only finitely many primes; call them p1, . . . , pn. Consider the

number

Qn = p1p2 . . . pn + 1 =
n∏
k=1

pk + 1.

By the previous lemma 2.6 we know that Qn can be written as a product of primes, and in

particular has at least one prime factor q.

Suppose q = pj for some pj in our finite list of primes. We know that

Qn − p1 . . . pn = 1

and q divides both Qn and p1 . . . pn (the first by hypothesis; the second because q = pj. Then

by lemma 1.13 on linear combinations we see that q divides 1.
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But no prime divides 1, so this is a contradiction. Thus there must be infinitely primes.

Question: where did we use the assumption that the set of primes is finite?

Figure 2.1: http://xkcd.com/622

Remark 2.9. If we have some finite list of primes p1, . . . , pn, we do not know that p1 . . . pn+1

is prime. We just know that there is some prime that was not on our list.

For instance, 2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 ∗ 509.

2.2 The Fundamental Theorem of Arithmetic

For further reading on the material in this subsection, consult Rosen 3.5, PMF 6.1–6.2,

Stein 1.1.4.

In the previous section we showed that every natural number greater than 1 can be

written as a product of primes. Further, if we allow “empty products” with zero factors,

then 1 is also a product of primes; and it’s clear that if we allow multiplication by ±1 we

have a prime factorization of any non-zero integer.

However, if we wish to reliably decompose integers into their prime factorizations, we

would like to get the same factorization every time. Thus we would like to show that there

is only one possible prime factorization of any given number.

There is one roadblock we need to be careful of. We can factor 6 = 2 · 3 or 6 = 3 · 2. We

can write 12 = 2 · 2 · 3 = 2 · 3 · 2 = 3 · 2 · 2. So these numbers have two or three “different”

factorizations. But we intuitively want to treat these as the same, “up to order.”

Conveniently, working in the integers we can use the natural total order to remove any

ambiguity.

Theorem 2.10 (Fundamental Theorem of Arithmetic). Every natural number can be written

uniquely as a product of primes in non-decreasing order.

We can write this theorem in a more general and precise form.
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Theorem 2.11 (Fundamental Theorem of Arithmetic, General Form). Every non-zero in-

teger can be written uniquely as a product

n = ±pe11 . . . penn

for some primes pi with pi < pi+1, and ei ∈ N.

In order to prove this theorem we will first need a couple of lemmas.

Lemma 2.12 (Euclid’s Lemma). Suppose a, b, c are integers such that (a, b) = 1 and a|bc.
Then a|c.

Proof. Because (a, b) = 1, there are integers m,n such that ma + nb = 1. Multiplying by

c gives the equation mac + nbc = c. Then a divides mac (clearly) and divides nbc since it

divides bc; by Lemma 1.13 on linear combinations we see that a divides mac+ nbc = c.

Lemma 2.13. Let p be a prime number and let a, b be integers. If p|ab then p|a or p|b.

Proof. Suppose p|ab. If p|a we’re done, so we will suppose p 6| a and prove that p|b.
Since p is prime, (p, a) = 1 by exercise 2.5. Then by Euclid’s Lemma 2.12, we know that

p|b.

Exercise 2.14 (?). Let a1, . . . , an be integers, and let p be a prime. Prove that if p|a1 . . . an =∏n
i=1 ai, then p|ai for some i.

Remark 2.15. We can actually take the property in Lemma 2.13 as the definition of a prime

number. In the integers the two concepts are the same; in larger collections of numbers this

is not the case.

In algebraic number theory, this divisibility property becomes the definition of a “prime”,

and our original definition becomes the definition of an “irreducible.”

Exercise 2.16. Let p be an integer with the following property: whenever a, b are integers

and p|ab, then p|a or p|b. Prove that p is prime.

We are now ready to prove the Fundamental Theorem. We will prove the simpler version;

the more general version is an obvious extension.

Proof of the Fundamental Theorem of Arithmetic. Let n > 1 be a natural number. In Lemma

2.6 we showed that n can be written as a product of primes, so we only need to show that

any factorization is unique.
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Suppose n can be written as a product of nondecreasing primes in two different ways;

that is, suppose

n = p1 . . . ps = q1 . . . qt

with pi, qi prime, and pi ≤ pi+1, qi ≤ qi+1. (We cannot guarantee pi < pi+1 since some

numbers have repeated factors; for instance we would write 36 = 2 · 2 · 3 · 3.)

We may divide through by all the common factors in the two lists, and get an equation

pi1 . . . pie = qj1 . . . qjf

which still holds, and has no prime present on both sides of the equation. But then we have

pi1|qj1 . . . qjf

and by Exercise 2.14 we see that pi1|qjk for some k. Since qjk is prime, it is divisible only by

1 and itself; since pi1 6= 1, we must have piq = qjk , which is a contradiction.

Thus we cannot have two distinct such prime factorizations, and the prime factorization

must be unique.

2.3 Where are the primes?

For further reading on the material in this subsection, consult Rosen 3.1-2, PMF 3.3.

We’ve now proven that multiplicatively, we can reduce all natural numbers uniquely

into primes. Thus, if we understand the prime numbers completely, we will understand the

multiplicative structure of the natural numbers. Unfortunately, understanding of the primes

has been notoriously elusive.

2.3.1 The Sieve of Eratosthenes

One of the earliest attempts to find the prime numbers was by Eratosthenes of Cyrene in

the third century BCE. Eratosthenes realized that we can make a list of prime numbers by

an iterative process.

We make a list of the first, say, hundred numbers, and cross off one because it a unit.

The first uncrossed on the list, 2, is prime; we write it down, and then discard it and all its

multiples (which of course aren’t prime since they’re divisible by 2).

Now the first uncrossed number, 3, is prime, since it’s not divisible by any smaller prime.

Now we can cross 3 and all its multiples. The first uncrossed number, 5, is prime, and we

can repeat the process; at the end we will know all the primes on our list.
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A process like this is called a “sieve” because it sifts the primes out of a larger set of

numbers. There is a substantial body of research known as “sieve theory” which formulates

better sieves and arguments based on sieves. Some of these more sophisticated sieves and

sieve arguments could make a good paper. These advanced sieving methods have allowed us

to build large lists of primes; as of January 2016, the largest known prime is the Mersenne

Prime 274,207,281 − 1.

Unfortunately, sieve theory has a major weakness known as the “parity problem”:

Fact 2.17 (Parity Problem). It is not possible for a purely sieve-theory-based argument to

differentiate primes from numbrs which are the product of two primes.

We shall discuss an example problem where this is an issue shortly. Of course, there is a

great deal of work trying to get around this limitation of sieve theory.

This technique also gives us a (very!) rough estimate for how many primes there are up

to a given number. In the first step of the sieve of Eratosthenes, we throw away about half

of our numbers. In the second step, we throw away a third–but wait, we’ve counted some of

them twice, so add a sixth of our numbers back in. In the third step we throw out a fifth,

but then we need to add back in a tenth and a fifteenth, but then we have to throw out a

thirtieth again.

In the limit, we expect the fraction of numbers which are prime to be roughly

1−
∑
p

1

p
+
∑
p6=q

1

pq
−
∑
p 6=q 6=r

1

pqr
+ . . .

Unfortunately, error terms in this approximation build quickly enough that getting good

data out of this is hard–in particular we run up against the parity problem very hard.

2.3.2 Counting Primes and the Prime Number Theorem

Based on data from algorithms like the sieve of Eratosthenes, mathematicians in the 1700s

and 1800s wished to estimate the density of primes.

Definition 2.18. The function π(x) is the number of prime numbers less than or equal to

x. Thus π(10) = 4 and π(100) = 25.

Legendre (1798) used counts of prime numbers by Vega to estimate that pi(x) was ap-

proximated by
log x

x− 1.08366
.

This was not quite correct, and Gauss came up with a more accurate conjecture, that

http://jaydaigle.net/teaching/courses/2016-fall-322/ 21

http://jaydaigle.net/teaching/courses/2016-fall-322/


Jay Daigle Occidental College Math 322: Number Theory

π(x) ∼ x

log x
∼ Li(x) =

∫ x

2

dt

log t
.

Chebyshev (1850) produced a great deal of work towards this, but the result was not

proven until Hadamard and de la Vallée-Poussin (1896) independently proved the Prime

Number Theorem:

Theorem 2.19 (Prime Number Theorem).

lim
x→∞

π(x) log(x)

x
= 1.

2.3.3 Riemann Zeta Function

Though several proofs exist today, including elementary proofs by Selberg and Erdős (1949),

the Prime Number Theorem was originally proved using results from complex analysis. Rie-

mann (1859) defined the Riemann Zeta Function

ζ(s) =
∞∑
n=1

n−s =
∏
p

1

1− p−s

(and the equality of the two formulas can be proved using the Fundamental Theorem of

Arithmetic).

The Riemann Zeta Function underlies a number of the most sought-after results in num-

ber theory today. It controls and describes a great deal of the “deep structure” of the

distribution of prime numbers, and I hope to return later in the course and discuss it in

more detail. Of particular note is the famous Riemann Hypothesis:

Conjecture 2.20. If s is a complex number with ζ(s) = 0, then either s is a negative even

integer, or the real part of s is equal to 1/2.

Proving this result would imply a number of important facts about the primes; in partic-

ular, it would imply that the error in the approximation given in the Prime Number Theorem

is very small. People often say that the Riemann Hypothesis would essentially imply that

the primes are distributed randomly.

2.3.4 Arithmetic Progressions

Let’s examine this idea of random distribution a bit more. It’s pretty clear that there are

very few primes that are, say, multiples of three. However, if the primes are “random” we

shouldn’t expect there to be more primes of the form 3n + 1 than 3n + 2. Similarly, there
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are no primes of the forms 4n or 4n + 2 but we would expect “equally many” of the forms

4n+ 1 and 4n+ 3. Indeed, our data seem to imply this.

There are some very precise formulations of this idea (and again, exploring these could

make a good paper). But the simplest version of the idea would simply expect all of these

sets to be infinite. This was indeed proven by Dirichlet in 1837.

Theorem 2.21 (Dirichlet). If a, b ∈ N with (a, b) = 1, then the set {an + b : n ∈ N} has

infinitely many primes.

An arithmetic progression is just a set of this form {an + b : n ∈ N}, in which the

difference between consecutive elements is constant. Thus Dirichlet proved that all non-

trivial arithmetic progressions that don’t start at 0 have infinitely many primes. Note we

could also phrase this in terms of modular arithmetic: the set of primes equivalent to b

mod a is infinite if (a, b) = 0.

We can also turn this question around and approach from the other angle. Dirichlet

proved that every (reasonable) arithmetic progression contains infinitely many primes. We

can ask instead whether the set of primes contains arithmetic progressions.

Green and Tao (2004) proved that the set of primes contains arithmetic progressions of

any length–thus if you want a set of thirty consecutive primes which are equal distances

apart, you can find one.

2.3.5 Prime Gaps

We just said that there are infinitely many times when the primes are spaced reasonably

closely. But if each number has a 1/ log n chance of being prime, then on average we would

expect the space pn and pn+1 to be about log(pn).

However, there is dramatic variance in both directions. It’s clear that the smallest possible

gap that can occur regularly is of size 2. In fact, we suspect that this happens infinitely often.

Conjecture 2.22 (Twin Primes). There are infinitely many prime numbers p such that p+2

is also prime.

Sieve theory has gotten us halfway to proving this result:

Theorem 2.23 (Chen). There are infinitely many primes p such that p+ 2 is either prime

or the product of two primes.

You might note that this is as close as we can get before running into the parity problem

again.
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We do know that twin primes are considerably rarer than primes. In particular, the sum

of the reciprocals of the primes
∑

1
p

diverges, similar to the harmonic series. But the sum

of the reciprocals of the twin primes converges–thus while they may be infinite, they are not

very infinite.

Recently, it was proven that there is some constant c so that there are infinitely many

pairs of primes p, p + N . The polymath project has proven the smallest such N is at most

246.

Notice that we can’t really look for triples p, p+2, p+4, since one of those will be divisible

by 3. Thus any triple of such primes must contain 3, and the only one is 3, 5, 7.

We can also look in the other direction: how large can the gaps between consecutive

primes get? It turns out that these gaps also get infinitely large, as you will prove on your

homework.

Exercise 2.24. Prove that for any n ∈ N, there are at least n consecutive composite integers.

Hint: consider (n+ 1)! + 2.

2.4 Primality Testing and Factorization

For further reading on the material in this subsection, consult Rosen 3.1,3.6.

The previous subsection stated a lot of results about the general distribution of prime

numbers. Now we will scale down a bit and figure out how to look at individual numbers–to

determine if they are primes, and factor them if they are not.

If we want to factor a natural number n, or just tell whether it’s prime, the obvious

idea is to try dividing by all the numbers smaller than n; an obvious optimization is to just

divide by all the primes, if we have a list of primes, since every composite number has a

prime factor.

One more optimization is not too hard to see:

Lemma 2.25. If n is a composite number, then n has a prime factor no larger than
√
n.

Proof. Since n is composite, we can write n = ab for 1 < a ≤ b < n. Then if a >
√
n then

ab ≥ a2 > (
√
n)

n
= n. Thus a ≤

√
n, and a has at least one prime factor p (which might be

the same as a). Thus 1 < p ≤ a ≤
√
n.

Thus to test if n is prime, or to attempt to factor it, we only need to try dividing by

every prime smaller than
√
n.
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2.4.1 Fermat Factorization

Fermat developed a factorization technique that is often better than the naive approach,

although substantially limited. The basic idea comes from the following lemma:

Lemma 2.26. If n is an odd positive integer, then there is a one-to-one correspondence

between factorizations of n into two positive integers, and pairs of squares whose difference

is n.

Proof. Let n be an odd positive integer, and suppose n = s2 − t2. Then we can factor

n = (s− t)(s+ t) and thus we have a factorization into two positive integers.

Conversely, letn = ab be a factorization into two positive integers. Then we can observe

that if we set s = (a+ b)/2 and t = (a− b)/2, then

s2 − t2 =
a2 + 2ab+ b2

4
− a2 − 2ab+ b2

4
=
ab

2
− −ab

2
= ab = n.

Thus if we can write n = x2− y2 as a difference of squares, we have a factorization. This

might not seem like a huge advance, since we’ve replaced one non-obviously-easy problem

with another, but it leads to a more straightforward algorithm:

Set t to be the least integer greater than
√
n so that t2 is the least square larger than n.

Then start computing the sequence

t2 − n, (t+ 1)2 − n, (t+ 2)2 − n, . . .

and examine it for squares; if we find a square s2 in this sequence, we have a factorization

of n = t2 − s2 = (t− s)(t+ s).

This algorithm always terminates, because it will eventually reach t = (n + 1)/2 and

yield the equations

n =

(
n+ 1

2

)2

−
(
n− 1

2

)2

= n · 1.

Example 2.27. Let’s factor 16899. We use a calculator to compute that
√

16899 ≈ 129.996,

so we start at 130. We compute

1302 − n = 16900− 16899 = 1 = 12

So we have

16899 = 1302 − 12 = (130− 1)(130 + 1) = 129 · 131.
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Example 2.28. Let’s factor 3827. We compute
√

3827 ≈ 61.8, so we start at 62. We

compute

622 − 3827 = 3844− 3827 = 17

632 − 3827 = 3969− 3827 = 142

642 − 3827 = 4096− 3827 = 269

652 − 3827 = 4225− 3827 = 398

662 − 3827 = 4356− 3827 = 529 = 232

so we have t = 66, s = 23, and thus

3827 = 662 − 232 = (66− 23)(66 + 23) = 43 · 89.

Unfortunately, the worst-case performance of this algorithm is actually pretty bad; in

the worst case, we have to check (n+ 1)/2−
√
n integers. But this algorithm works well in

“good” cases where our integer n has two factors of similar size. And many more advanced

factorization techniques are based on this idea.

2.4.2 Efficient Factorization Algorithms

There are of course more efficient factorization methods, some of which we will see later in

the course, after we study modular arithmetic. There are a few that are outside of the scope

of this course, but which I want to mention now.

The second most efficient known classical algorithm is the quadratic sieve of Carl Pomer-

ance (1981), which takes approximately e
√
logn log logn operations to factor an integer n. This

algorithm is basically a method for making Fermat factorization efficient by trying many

possible square differences in parallel. Explaining this algorithm would probably make a

good paper. This algorithm is in fact the most efficient for numbers smaller than 10100 and

is still in wide use.

The most efficient known classical algorithm is the general number field sieve of Buhler,

Lenstra, Pomerance. This takes approximately

e
3
√

64/9(logn)1/3(log logn)2/3

operations to factor an integer n. This algorithm holds the record for the largest computed

prime factorization; in 2009 a group of researchers used hundreds of computers to factor a

232-digit number called “RSA-768” used for some cryptographic applications.
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Remark 2.29. Note that you could write both of these as polynomials in n, but for complexity

reasons we actually want to count the number of bits it takes to represent n, which is

approximately log n. So rather than writing the times as polynomial in n we write them as

exponential in log n.

Thus there is no known classical algorithm that factors a large integer in polynomial

time; we say that we do not believe integer factorization is “in P”.

The most efficient known algorithm at all is Shor’s Algorithm, formulated by Peter

Shor in 1994. This algorithm runs only on quantum computers, and takes approximately

(log n)2(log log n)(log log log n) steps to factor an integer n. Thus on a quantum computer

it is possible to to factor an integer in polynomial time (we say the integer factorization

problem is “in BQP”).

2.4.3 Prime testing and prime certificates

While it is generally difficult to factor a large number, it turns out that it is much easier if

we just want to know whether a number is prime. We can in fact (somewhat frustratingly)

prove a number is or isn’t prime, while having no idea what its factors are if it is composite.

In 2002, Agrawal, Kayal, Saxena found an algorithm that can prove an integer to be

prime in about (log n)12 operations. In fact this algorithm has been improved to work in

(log n)6+ε operations for any ε > 0; if a certain widely believed conjecture is true, it in fact

works in (log n)6 operations.

A different algorithm by Miller (1975) will in fact work in (log n)5 operations, if the

Generalized Riemann Hypothesis is true.

Remark 2.30. These results imply that the prime factorization problem is definitely in NP,

which roughly means that a proposed solution can be checked in polynomial time, even if

it takes longer to generate a solution. Given a factorization of a large integer, it is easy to

check it is correct by multiplying all the numbers together, and by these results we can also

confirm that every factor is in fact prime in polynomial time.

However, prime factorization is not (known to be) NP-complete. Many researchers believe

that it is simultaneously impossible to solve in polynomial time, but easier in some sense

than problems like the Travelling Salesman or the Shortest Vector Problem.

In all of this section, we’ve been studying “deterministic” algorithms, that definitely

return the correct answer. But if we only want answers that are “probably” right, then

prime testing becomes much easier. In order to understand this, we need to develop some

tools from modular arithmetic.
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