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4 Exponential Congruences and Pseudoprimes

In this section we will develop a couple of important tools that rely on congruences and

modular arithmetic, and use them to understand the primes a bit better–and come up with

a quick test that will “usually” tell us if a number is prime.

4.1 Fermat’s Little Theorem

For further reading on the material in this subsection, consult Rosen 6.1, PMF 9.1.

In this section we will prove a few results about congruences modulo a prime number.

We already know one such result: if p is a prime, then every number not equivalent to 0

modulo p has a multiplicative inverse modulo p (and this is true only if p is prime or 1).

We will start with another result proved by Joseph Lagrange in 1771:

Theorem 4.1 (Wilson’s Theorem). If p is prime, then (p− 1)! ≡ −1 mod p.

Example 4.2. If p = 5, then 4! = 4 · 3 · 2 cdot1 = 24 ≡ 1 mod 25.

If p = 7 then 6! = 6 · 5 · 4 · 3 · 2 · 1. We could multiply this out (it’s 720, in fact), but we

probably don’t want to. It’s easier to write

6! = 6 · 5 · 4 · 3 · 2 · 1 = 6(4 · 2)(5 · 3) ≡ (−1)(1)(1) mod 7.

That is, we can pair every number with its modular inverse modulo 7, except for 6 ≡ −1

which is left “stranded.” This gives us the idea for the proof.

Proof. When p = 2 we can check directly that 1! = 1 ≡ 1 mod 2. So let’s assume p is an

odd prime. Then consider the list of numbers 1, 2, . . . , p−1. We know that each such integer

a has a modular inverse a−1, which must also be on this list.

But we proved that the only numbers which are their own inverses modulo p are 1 and

p− 1 ≡ −1. (see Lemma 3.30). Thus each integer on the list 2, 3, . . . , p− 2 is the modular

inverse of exactly one other integer on the list, and thus we have

p−2∏
i=2

i = 2 · 3 · · · · · (p− 2) ≡ 1 mod p

(p− 1) = 1 · 2 · 3 · · · · · (p− 2)(p− 1) ≡ 1(p− 1) ≡ −1 mod p.

Importantly, the converse of this theorem is true–any number with this property is prime.
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Theorem 4.3. If n ≥ 2 is an integer and (n− 1)! ≡ 1 mod n then n is prime.

Proof. Suppose n is a composite integer. Then n = ab for some integers a, b with 1 < a, b < n.

From here we can take two approaches:

1. If a 6= b then ab|(n− 1)! and thus (n− 1)! ≡ 0 mod n, and since n > 1 we know that

0 6≡ −1 mod n. Thus we only need to consider the case where a = b.

If a = b = 2 then we can see easily that (n − 1)! = 3! = 6 ≡ 2 mod 4 and thus

(n − 1)! 6≡ −1 mod 4. So assume a = b > 2. Then ab > 2a so 2a is a factor in the

product (n− 1)!, and thus 2ab|(n− 1)! and so does ab = n. Thus (n− 1)! ≡ 0 mod n.

2. Alternatively, we can suppose that (n− 1)! ≡ −1 mod n, implying that n|(n− 1)! + 1

and thus a|(n− 1)! + 1. But a|(n− 1)! as well and thus a|(n− 1)! + 1− (n− 1)! = 1

and thus a = 1, which is a contradiction.

Thus we can use Wilson’s Theorem to test whether a given number is prime: just compute

(p−1)! mod p and see if the result is p−1. Unfortunately, this isn’t really a good or efficient

prime test, since it takes a large amount of computation.

Similar to Wilson’s Theorem is Fermat’s Little Theorem (which is not Fermat’s Last

Theorem!). The first published proof is due to Leonhard Euler.

Theorem 4.4 (Fermat’s Little Theorem). If p is prime and a is an integer with p 6 |a, then

ap−1 ≡ 1 mod p.

Proof. Consider the p− 1 integers a, 2a, . . . , (p− 1)a. We know that none of these integers

are equivalent mod p, since if ia ≡ ja mod p then since (p, a) = 1 we know that i ≡ j

mod p. Similarly none of these are divisible by p, since if p|ja then p|j.
Thus our list contains one representative of every non-zero equivalence class modulo p.

So the product of these p− 1 integers is equivalent to the product of the first p− 1 non-zero

integers modulo p, and thus we have

p−1∏
k=1

ka ≡
p−1∏
k=1

k mod p

ap−1

p−1∏
k=1

≡
p−1∏
k=1

k = (p− 1)! mod p
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But since p 6 |(p− 1)!, we know that ((p− 1)!, p) = 1, so we can cancel the (p− 1)! from both

sides and get

ap−1 ≡ 1 mod p.

Remark 4.5. From the perspective of group theory, this says that the order of any element

of the multiplicative group (Z/pZ)× divides p− 1 which is the order of this group.

Corollary 4.6. If p is prime and a is an integer, then ap ≡ a mod p.

Proof. If p 6 |a, then by Fermat’s little theorem, ap−1 ≡ 1 mod p. Multiplying both sides by

a gives ap ≡ a mod p.

If p|a then ap ≡ 0 ≡ a mod p.

Example 4.7. This makes it easy to compute large powers of numbers modulo primes. For

instance, suppose we want to compute 2700 mod 7. We know that 26 ≡ 1 mod 7 and thus

(26)(116) = 2696 ≡ 1 mod 7, so 2700 ≡ 24 ≡ 16 ≡ 2 mod 7

Corollary 4.8. If p is a prime and a is an integer with p 6 |a then ap−2 is an inverse of a

modulo p.

Example 4.9. What is the inverse of 5 modulo 7? It is

55 ≡ 25 · 25 · 5 ≡ 4 · 4 · 5 ≡ 16 · 5 ≡ 2 · 5 ≡ 3 mod 7.

What is the inverse of 7 modulo 11? It is

79 ≡ (−4)9 ≡ −49 ≡ − ≡ (42)4·4 ≡ −164·4 ≡ −54·4 ≡ −252·4 ≡ −32·4 ≡ 2·4 ≡ 8 mod 11.

Recall that when we were trying to solve linear congruences, we reduced many questions

to simply the task of finding modular inverses. Thus we can use Fermat’s little theorem to

make solving linear congruences easier.

Corollary 4.10. If a, b are integers and p is prime with p 6 |a, then the solutions to the

congruence ax ≡ b mod p are the integers x ≡ ap−2b mod p.
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4.2 Pseudoprimes

For further reading on the material in this subsection, consult Rosen 6.2.

In the last subsection we proved two results about congruences modulo a prime number.

Wilson’s theorem holds if and only if a number is prime, and thus gives us a (very inefficient)

prime test.

Fermat’s little theorem also holds for congruences modulo any prime, so we can use it to

prove a number is not prime.

Example 4.11. We can show 63 is not prime by calculating

262 = 260 · 22 = (26)10 · 2 = 6410 · 4 ≡ 110 · 4 ≡ 4 mod 63.

Thus 63 cannot be prime, since 2p−1 ≡ 1 mod p for any prime.

Unfortunately, Fermat’s little theorem doesn’t give a very clear prime test, since the

converse is not true.

Example 4.12. Let n = 341 = 11 · 31. But 2340 = 2 · (210)34 and we know that 210 ≡ 1

mod 11 by Fermat’s little theorem, so

2340 ≡ (210)34 ≡ 134 ≡ 1 mod 341.

Thus 2341−1 ≡ 1 mod 341 even though 341 is not prime.

Remark 4.13. This result is due to Pierre Sarrus in 1919; it was not known that the converse

to Fermat’s little theorem was false until relatively recently.

Definition 4.14. If b is a positive integer, we say an integer n is pseudoprime to the base b

if n is composite but bn ≡ b mod n.

Note that if (b, n) = 1 then this is equivalent to bn−1 ≡ 1 mod n

Example 4.15. We showed that 341 = 11 · 31 is pseudoprime to base 2. We can also check

that 561 = 3 · 11 · 17 and 645 = 3 · 5 · 43 are as well.

Remark 4.16. These are somtimes called “Fermat pseudoprimes” because they pass this

particular prime test. There are other tests that can generate false positives; we should

discuss Euler pseudoprimes towards the end of the course.

For any given base, there are more primes than there are pseudoprimes by a wide margin;

pseudoprimes are fairly rare. However, there are infinitely many pseudoprimes for any base.

We prove this for base 2 (Proving it for other bases requires more work but is totally possible).
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Lemma 4.17. If d, n are positive integers with d|n, and b > 1 is an integer, then bd−1|bn−1.

Proof. We know that for any t,

xt − 1 = (x− 1)(1 + x+ x2 + · · ·+ xt−2 + xt−1.

Thus

bn − 1 = (bd − 1)(1 + bd + b2d + · · ·+ bn−d).

Theorem 4.18. There are infinitely many pseudoprimes to the base 2.

Proof. Let n1 = 341 be a pseudoprime to the base 2. Recursively define nk+1 = 2nk − 1. We

claim that nk is a pseudoprime to the base 2 for each natural number k.

First we prove by induction that nk is composite. n1 = 11 · 31 is composite. Assume (for

induction) that ni is composite. Then we can write ni = aibi with 1 < ai, bi < ni, and we

can write

ni+1 = 2ni − 1 = (2a − 1)(1 + 2a + · · ·+ 2ni−a).

Since 2a − 1 > 1 and 1 + 2a + · · · + 2ni−a > 1, we know that ni+1 is composite. Thus, by

induction, nk is composite for each natural number k.

Now we show that 2nk ≡ 2 mod nk. Again, we use induction. We showed, 2n1 ≡ 2

mod n1. So assume (for induction) that 2ni ≡ 2 mod ni. This means there is an integer m

with 2ni − 2 = mni.

Then we see that 2ni+1−1 = 22ni−2 = 2mni . Then

ni+1 = 2ni − 1|2mni − 1 = 2ni+1−1 − 1.

Thus 2ni+1−1 ≡ 1 mod ni+1, so ni+1 is a pseudoprime to the base 2.

The simplest version of the Fermat test therefore does not work to test whether a number

is prime, because it has (admittedly rare) counterexamples.

There is still some hope we can use this Fermat test to test whether a number is prime,

by using multiple bases, as follows:

Example 4.19. Let us test the primality of 341 using the base 7. We observe that 73 =

343 ≡ 2 mod 341, which makes this an eaqy base to work with, especially since we already

know facts about 2, like that 210 ≡ 1 mod 341. Then we see that

7340 = (73)113 · 7 ≡ 2113 · 7 ≡ (210)11 · 23 · 7 ≡ 111 · 8 · 7 ≡ 56 6≡ 1 mod 341.

Thus we can see that 341 is not prime because 7340 6≡ 1 mod 341.

This approach usually works, but unfortunately it does not always work.
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4.2.1 Carmichael Numbers

Definition 4.20. If n is a positive integer such that bn−1 ≡ 1 mod n for all positive integers

b with (b, n) = 1, we say n is a Carmichael number or an absolute (Fermat) pseudoprime.

Example 4.21. We claim that 561 = 3·11·17 is a Carmichael number. Suppose (b, 561) = 1.

Then (b, 3) = (b, 11) = (b, 17) = 1. Thus by Fermat’s little theorem, b2 ≡ 1 mod 3, b10 ≡ 1

mod 11, and b16 ≡ 1 mod 17.

Then we see that b560 = (b2)280 ≡ 1 mod 3, b560 = (b10)56 ≡ 1 mod 11, and b560 =

(b16)35 ≡ 1 mod 17. Thus by the Chinese Remainder Theorem, b560 ≡ 1 mod 561.

Carmichael conjectured that there were infinitely many Carmichael numbers in 1912; in

1992, Alford, Granville, and Pomerance proved that if C(x) is the number of Carmichael

numbers less than x, then for large x we have C(x) > x2/7. We wont’ prove this result, but

we will prove the easy half of it.

Theorem 4.22. If n =
∏k

i=1 qi for k > 2, where the qi are all distinct primes, and (qi −
1)|n− 1 for all i, , then n is a Carmichael number.

Proof. We can see the proof following from the computation we just did for 561. Suppose b

is a positive integer with (b, n) = 1. Then (b, qi) = 1 for each i, and thus bqi−1 ≡ 1 mod qi

by Fermat’s Little Theorem. Since (qi − 1)|n − 1, we then have that bn−1 ≡ 1 mod qi for

each i, and the Chinese Remainder Theorem tells us that bn−1 ≡ 1 mod
∏k

i=1 qi.

Remark 4.23. The converse of this theorem is also true, but we’re not ready to prove it yet.

Thus the proof that there are infinitely many Carmichael numbers reduces to proving

that there are infinitely many numbers n =
∏
qi where qi − 1|n− 1 for each qi.

Fact: there are 43 Carmichael numbers ≤ 106, and 105,202 that are ≤ 1015. (That seems

like a lot, but 1015 is a very large number).

4.2.2 The Miller test

We can push all these arguments a bit farther. We know from your homework that if x2 ≡ 1

mod p then x ≡ ±1 mod p. So suppose we have some number b such that bn−1 ≡ 1 mod n.

We can compute b(n−1)/2 mod n; if this quantity is not congruent to ±1 mod n then n must

not be prime.

Example 4.24. Let n = 561 and let b = 5. Then we compute that 5560 ≡ 1 mod 561 as

before. But 5280 ≡ 67 6≡ ±1 mod 561 so we know that 561 is not prime.

(Note: we can do this by hand but we’d really like a computer).
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Definition 4.25. Let n be an integer with n > 2 and n− 1 = 2st for s ∈ N and t odd. We

say n passes the Miller test for the base b if either bt ≡ 1 mod n or if b2
jt ≡ −1 mod n for

some 0 ≤ j ≤ s− 1.

Our previous example showed that 561 does not pass the Miller test for the base 5. We

now show that 2047 = 23 · 89 passes the Miller test for the base 2.

Example 4.26. We have 22046 = (211)186 = (2048)186 ≡ 1 mod 2047, so 2047 is pseudoprime

to the base 2. Further, we have 2046 = 1023 · 2, and 21023 = (211)93 = (2048)93 ≡ 1

mod 2047, and thus 2047 passes the Miller test for the base 2.

Theorem 4.27. If n is prime and b is a positive integer with n6 |b, then n passes the Miller

test for the base b.

Proof. Set n − 1 = 2st for t odd. Let xk = b(n−1)/2k = b2
s−kt for 0 ≤ k ≤ s, and thus

x0 = bn−1. Since n is prime, by Fermat’s Little Theorem, we know that x0 = bn−1 ≡ 1

mod n.

We prove the rest by induction (sort of). Fix some k ≤ s and suppose (for induction)

that x1 ≡ 1 mod n for each i < k . Then since (xk)
2 = (b(n−1)/2k)2 = b(n−1)/2k−1

= xk−1 ≡ 1,

we know that xk ≡ ±1 mod n. Thus by induction, either xk ≡ 1 mod n for every k < s,

or xk ≡ −1 mod n for some k ≤ s.

Thus in particular, either b(n−1)/2k = bt2
k ≡ −1 mod n for some k, or b(n−1)/2s − bt ≡ 1

mod n, so n passes the Miller test for the base b.

Notice that if n passes the Miller test for the base b, then in particular bn−1 ≡ 1 mod n,

and thus n is a pseudoprime to the base b. But passing the Miller test is in fact harder,

leading us to define:

Definition 4.28. If n is composite and passes the Miller test for the base b, we say n is a

strong pseudoprime to the base b.

Thus we saw that 2047 is a strong pseudoprime to the base 2.

Theorem 4.29. There are infinitely many strong pseudoprimes to the base 2.

Proof. We will claim something more specific: if n is a pseudoprime to the base 2, then N =

2n − 1 is a strong pseudoprime to the base 2. Since there are infinitely many pseudoprimes,

there are thus infinitely many strong pseudoprimes.
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Suppose n is an odd pseudoprime to the base 2. That is, n is composite and 2n−1 ≡ 1

mod n. Thus 2n−1 − 1 = nk for some odd integer k. Then

N − 1 = 2n − 2 = 2(2n−1 − 1) = 2nk

is the factorization of N into an odd integer and a power of 2.

But we compute now that 2n ≡ 1 mod N and thus

2(N−1)/2 = 2nk = (2n)k ≡ 1 mod N.

Thus 2(N−1)/2 ≡ 1 mod N , and (N − 1)/2 is the largest odd factor of N − 1, so N passes

the Miller test for the base 2.

Now we only need to show that N is composite. But we showed in the proof of Theorem

4.18 that if n is composite then so is N = 2n − 1. Thus N is composite but passes the

Miller test for the base 2, and thus is a strong pseudoprime to the base 2. Because there are

infinitely many pseudoprimes, there are thus infinitely many strong pseudoprimes.

Theorem 4.30. If n is an odd composite positive ingeter, then n passes the Miller test for

at most (n− 1)/4 bases b with 1 ≤ b ≤ n− 1.

We need more tools before we can prove this. We can use this result to prove that a

number is prime, but it takes far longer than simple trial division. But it produces a good

probabilistic primality test:

Theorem 4.31 (Rabin’s Probabilistic Primality Test). Let n be a positive integer. Pick k

different postiive integers less than n and perfom the Miller test on n for each of these bases.

If n is composite, the probability that n passes all k tests is less than (1/4)k.

This generates an extremely efficient probabilistic test; The odds of a composite number

n passing 100 Miller tests are less than 10−60. (Note: always be careful reasoning about

p-values: this doesn’t mean that a number that passes 100 Miller tests has less than 10−60

chance of being composite. The chances are still quite small).

However, if we assume the Generalized Riemann Hypothesis, we can get a good deter-

ministic prime test.

Conjecture 4.32. For every composite positive integer n, there is a base b < 2(log n)2 such

that n fails the Miller test for the base b.

If this conjecture is true, the Miller test gives us a very good deterministic primality test,

which takes O((log n)5) operations.
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4.3 Euler’s Theorem and composite moduli

For further reading on the material in this subsection, consult Rosen 6.3, PMF 9.3.

All the work we’ve done so far only applies to prime moduli. We’d like to extend or

adapt these results to composite moduli. To do this we need to tweak everything slightly.

Definition 4.33. Let n be a positive integer. We define the Euler phi-function φ(n) to be

the number of positive integers ≤ n that are relatively prime to n.

Example 4.34. φ(7) = 6, since 7 is relatively prime to 1, 2, 3, 4, 5, 6. φ(8) = 4 since 8 is

relatively prime to 1, 3, 5, 7. φ(9) = 6 since 1, 2, 4, 5, 7, 8 are relatively prime to 9. φ(10) = 4

since 1, 3, 7, 9 are relatively prime to 10.

Definition 4.35. A reduced residue system modulo n is a set of φ(n) integers such that each

element of the set is relatively prime to n, and no congruence class modulo n is represented

more than once.

Example 4.36. {1, 2, 3, 4, 5, 6} is a reduced residue system modulo 7. So is {2, 4, 6, 8, 10, 12}.
{1, 3, 5, 7} is a reduced residue system modulo 8. So is {−3,−1, 1, 3}.

Lemma 4.37. If {r1, r2, . . . , rφ(n)} is a reduced residue system modulo n and (a, n) = 1,

then the set {ar1, ar2, . . . , arφ(n)} is also a reduced residue system modulo n.

Proof. Suppose {r1, r2, . . . , rφ(n)} is a reduced residue system modulo n, and (a, n) = 1.

First we have to prove that (arj, n) = 1. Suppose (arj, n) > 1. Then there is some

prime p that divides both n and arj. But then either p|a or p|rj, so either p|n and p|a and

thus (a, n) 6= 1; or p|n and p|rj and thus (rj, n) 6= 1. Either way is a contradiction. Thus

(arj, n) = 1 for each j.

Now we wish to show that if arj ≡ ari mod n then i = j. But suppose arj ≡ ari

mod n. Then since (a, n) = 1, by modular cancellation we know that rj ≡ ri mod n,

and since {r1, . . . , rφ(n)} is a reduced residue system, we know that rj ≡ ri mod n only if

j = i.

Theorem 4.38 (Euler’s Theorem). If a, n are natural numbers and (a, n) = 1, then aφ(n) ≡ 1

mod n.

Proof. Let {r1, r2, . . . , rφ(n) be the reduced residue system made up of integers less than n that

are relatively prime to n. Then since (a, n) = 1, we know that the set {ar1, ar2, . . . , arφ(n)}
is a reduced residue system. Thus the set of least positive residues

{ar1 mod n, ar2 mod n, . . . , arφ(n) mod n}
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must be the set {r1, r2, . . . , rφ(n)} in some order (because each set has exactly one represen-

tative of each equivalence class).

If we multiply them all together, this tells us that

r1r2 . . . rφ(n) ≡ (ar1)(ar2) . . . (arφ(n)) ≡ aφ(n)(r1r2 . . . rφ(n) mod n.

But since (ri, n) = 1, we know that (r1r2 . . . rφ(n), n) = 1, and thus by modular cancellation

we have aφ(n) ≡ 1 mod n as desired.

Corollary 4.39. If a,m are natural numbers with (a,m) = 1, then aφ(m)−1 is a multiplicative

inverse for a modulo m.

Example 4.40. Compute 5200 mod 9.

We know that 56 = 5φ(9) ≡ 1 mod 9. Thus

5100 = 5198 · 52 = (56)33 · 25 ≡ 1 · 25 ≡ 7 mod 9.

These results look suspiciously similar to Fermat’s little theorem and its corollary. In

fact Fermat’s little theorem is a special case if φ(p) = p− 1, which is in fact the case.

Exercise 4.41. φ(n) = n− 1 if and only if n is prime.

Remark 4.42. There are a lot more results we can prove about computing φ(n), and basically

the next big chunk of material will be devoted to that.
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