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5 Multiplicative Functions

For further reading on the material in this subsection, consult Rosen 7.1, Stein 2.2.

Definition 5.1. An arithmetic function is a function defined for all natural numbers.

A function is multiplicative if it has the property that f(mn) = f(m)f(n) whenever

(m,n) = 1. It is completely multiplicative if f(mn) = f(m)f(n) for all natural numbers

m,n.

Example 5.2. The functions f(n) = 1 and g(n) = n are completely multiplicative.

We will see that φ(n) is multiplicative but not completely multiplicative. (Example:

φ(4) = 2 6= 1 · 1 = φ(2) · φ(2)).

Completely multiplicative functions are easy to understand, but we can get a good grasp

even of regularly multiplicative functions.

Proposition 5.3. If f is multiplicative and n = pa11 p
a2
2 . . . pass =

∏s
i=1 p

ai
i is the prime

factorization of n, then

f(n) = f(pa11 )f(pa22 ) . . . f(pass ) =
s∏

i=1

f(paii ).

Proof. We prove by induction on s, the number of distinct prime factors of n. If s = 1 then

n = pa11 and then f(n) = f(pa11 ) is trivially true.

Suppose the proposition is true for all integers with k distinct prime factors, and suppose

n has k+ 1 distinct prime factors, say n =
∏k+1

i=1 p
ai
i . We observe that

(∏k
i=1 p

ai
i , p

ak+1

k+1

)
= 1,

and thus by definition of a multiplicative function we know that

f

(
k+1∏
i=1

paii

)
= f

(
k∏

i=1

paii

)
f(p

ak+1

k+1 ).

And by inductive hypothesis we know that

f

(
k∏

i=1

paii

)
=

k∏
i=1

f(paii )

and thus we have

f

(
k+1∏
i=1

paii

)
=

k∏
i=1

f(paii )f(p
ak+1

k+1 ) =
k+1∏
i=1

f(paii ).

Thus for any multiplicative function, if we can compute its value for prime powers, we

can easily compute its value for any number.
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5.1 The Euler φ-function

For further reading on the material in this subsection, consult Rosen 7.1, Stein 2.2.

We want to understand the Euler φ-function much better. We will prove that it is a

multiplicative function (though, as we observed earlier, it is not completely multiplicative).

After that we’ll figure out how to compute φ of prime powers, which will allow us to easily

compute φ(n) for any positive integer n.

Proposition 5.4. Let m,n be relative prime natural numbers. Then φ(mn) = φ(m)φ(n).

In other words, the function φ(n) is multiplicative.

Proof. Write the numbers ≤ mn as follows:

1 m+ 1 2m+ 1 . . . (n− 1)m+ 1

2 m+ 2 2m+ 2 . . . (n− 1)m+ 2

3 m+ 3 2m+ 3 . . . (n− 1)m+ 3
...

...
...

. . .
...

r m+ r 2m+ r . . . (n− 1)m+ r
...

...
...

. . .
...

m 2m 3m . . . nm

Note that (km + r,m) = (r,m), thus the first element of a given row is relatively prime to

m if and only if every element of that row is. Since (r,m) > 1 implies that (r,mn) > 1, we

only need to consider elements in rows r where (r,m) = 1. There are, of course, φ(m) such

rows.

Now suppose (r,m) = 1 and consider the elements of this row, which are km + r for

0 ≤ k ≤ n − 1. We claim this is a complete system of residues modulo n. It’s enough

to prove that no two elements are congruent to each other, by HW 4 problem 2. But if

im + r ≡ jm + r mod n then n|m(i − j), and since (n,m) = 1, by Euclid’s lemma this

implies n|i− j. But i, j < n, so i = j.

Since this is a complete system of residues, exactly φ(n) of these integers are relatively

prime to n. Since these integers are also relatively prime to m, they are relatively prime to

mn.

Thus there are φ(m) rows that contain any elements relatively prime to mn; each such row

contains φ(n) such elements. Thus there are in total φ(m)φ(n) natural numbers relatively

prime to mn and ≤ mn; but this is the definition of φ(mn).
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Now that we know φ(n) is a multiplicative function, we know we can compute it purely

by computing its value at prime powers. So we turn our attention to computing φ(pk). First,

recall from homework that φ(n) = n− 1 if and only if n is prime.

Lemma 5.5. Let p be a prime number, and let k be a positive integer. Then φ(pk) = pk−pk−1.

Proof. An integer is relatively prime to pk if and only if it is divisible by p. Thus the integers

n ≤ pk which are not relatively prime to pk are the integers `p for 1 ≤ ` ≤ pk−1. There are

of course pk−1 such integers, and there are pk total integers n ≤ pk; thus there are pk − pk−1

integers n ≤ pk such that (n, pk) = 1.

Example 5.6. φ(210) = 210 − 29 = 1024− 512 = 512.

φ(73) = 73 − 72 = 343− 49 = 298.

Theorem 5.7. Let n =
∏k

i=1 p
ai
i be the prime factorization of a natural number. Then

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pk

)
= n

k∏
i=1

(
1− 1

pi

)
.

Proof. By proposition 5.3, we know that

φ(n) =
k∏

i=1

φ(paii ).

But by lemma 5.5 we know that

φ(paii ) = paii − p
ai−1
i = paii

(
1− 1

pi

)
.

Thus

φ(n) =
k∏

i=1

φ(paii ) =
k∏

i=1

paii

(
1− 1

pi

)

=

(
k∏

i=1

paii

)(
k∏

i=1

(
1− 1

pi

))

= n
k∏

i=1

(
1− 1

pi

)
.

Example 5.8.

φ(100) = φ(22 · 52) = 100(1− 1/2)(1− 1/5) = 100 · 1

2
· 4

5
= 40.

φ(360) = φ(23 · 32 · 5) = 360(1− 1/2)(1− 1/3)(1− 1/5) = 360
8

30
= 96.
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Corollary 5.9. If n > 2 then φ(n) is even.

Proof. Let n =
∏k

i=1 p
ai
i . Then φ(n) =

∏k
i=1 φ(paii ).

Suppose n has an odd prime factor pk. Then since pakk and pak−1k are both odd, 2|pakk −
pak−1k = φ(pk)|φ(n).

Now suppose n has no odd prime factors. Then n = 2r and r > 1. Then φ(n) =

2r − 2r−1 = 2r−1 is even.

This opens up an additional question: given an integer m, for what n is φ(n) = m?

Example 5.10. What are the solutions to the equation φ(n) = 8?

Suppose n = pa11 p
a2
2 . . . pakk . Then we have the equation

φ(n) =
k∏

j=1

p
aj−1
j (pj − 1)

which is just a restatement of theorem 5.7. Then the only primes that can divide n are 2,

3, and 5, since we know that pi − 1|n. Further, if ai > 1 then pi|n, so we know that 3 and 5

can each divide n at most once. Thus we have n = 2a23a35a5 , and a3, a5 are either 0 or 1.

Suppose a3 = a5 = 0 so that n = 2a2 . Then φ(n) = φ(2a2) = 2a2−1(2− 1), which impiles

that a2 = 4, n = 16.

Suppose a3 = 1, a5 = 0, so that n = 2a2 ·3. Then φ(n) = φ(2a2 ·3) = 2a2−1(2−1)30(3−1) =

2a2 . This implies that a2 = 3, n = 8 · 3 = 24.

Suppose a3 = 0, a5 = 1, so that n = 2a2 ·5. Then φ(n) = φ(2a2 ·5) = 2a2−1(2−1)50(5−1) =

2a2+1. This implies that a2 = 2, n = 4 · 5 = 20.

Suppose a3 = 1, a5 = 1, so that n = 2a2 · 3 · 5. If a2 > 0 then φ(n) = φ(2a2 · 3 · 5) =

2a2−1(2− 1)30(3− 1)50(5− 1) = 2a2+2. This implies that a2 = 1, n = 2 · 3 · 5 = 30. If a2 = 0

then instead φ(n) = φ(3 · 5) = 2 · 4 = 8 does in fact work, so n = 15.

Thus the possibilities are n = 15, 16, 20, 24, 30.

5.2 Summatory functions

For further reading on the material in this subsection, consult Rosen 7.2, Shoup 2.9.

In this section we’ll discuss another class of multiplicative functions, known as summatory

functions. Though these do not look like they should be multiplicative, they often are.

Definition 5.11. If f is an arithmetic function, we define the summatory function of f to

be

F (n) =
∑
d|n

f(d)
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where the sum is over all numbers d which divide n.

Definition 5.12. We define the number of divisors function τ(n) to be the number of natural

numbers ≤ n which divide n. We can write τ(n) =
∑

d|n 1 so τ is a summatory function.

We define the sum of divisors function σ(n) =
∑

d|n d to be the sum of the divisors of n.

From the definition we see that σ is also a summatory function.

Proposition 5.13. If f is a multiplicative function, then the summatory function of f ,

F (n) =
∑

d|n f(d), is also multiplicative.

This result seems quite surprising at first, since addition and multiplication don’t always

play well together. Our basic strategy is to write each divisor of mn as a divisor of m times

a divisor of n–and this is unique since m and n share no common factors. Thus we can split

our sum of divisors of mn into a product of sums of divisors of m and sums of divisors of n.

Proof. Suppose (m,n) = 1. We wish to prove that F (mn) = F (m)F (n). We know that

F (mn) =
∑

d|mn f(d).

We can write any factor of mn uniquely as a product of a factor d1 of m, and a factor d2

of n, and we have (d1, d2) = 1. Thus we have

F (mn) =
∑
d|mn

f(d) =
∑

d1|m,d2|n

f(d1d2) =
∑

d1|m,d2|n

f(d1)f(d2).

But this sum factors, since we can write

∑
d1|m,d2|n

f(d1)f(d2) =
∑
d1|m

∑
d2|n

f(d1)f(d2) =
∑
d1|m

f(d1)
∑
d2|n

f(d2)


=

∑
d1|m

f(d1)

∑
d2|n

f(d2)

 = F (m)F (n).

Corollary 5.14. σ(n) and τ(n) are multiplicative functions.

Lemma 5.15. Let p be prime and a ∈ N. Then τ(pa) = a+ 1 and

σ(pa) = 1 + p+ p2 + · · ·+ pa =
pa+1 − 1

p− 1
.

Proof. The divisors of pa are 1, p, p2, . . . , pa. Thus there are a+1 and the result for τ follows.

The first formula for σ also follows; the second comes from the geometric series formula, or

from the difference of a+ 1st powers formula.
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Corollary 5.16. Let n =
∏k

i=1 p
ai
i . Then

σ(n) =
k∏

i=1

pai+1
i − 1

pi − 1

τ(n)
k∏

i=1

(ai + 1).

Theorem 5.17. Let n be a positive integer. Then
∑

d|n φ(d) = n. That is, the summatory

function of the Euler φ-function is the identity function.

Proof. We’re going to turn this into a counting/combinatorial argument. We’re going to

divide the integers ≤ n into classes Cd, where each class will contain exactly one number d

which divides n, and the class will have φ(n/d) elements. Thus
∑

d|n φ(n/d) =
∑

d|n #Cd,

and the latter sum must be n since it sums the sizes of a collection of sets whose union is

{1, . . . , n}.
Say the integer m is in the class Cd if 1 ≤ m ≤ n and (m,n) = d. We see that m|n if

and only if (m,n) = m, so Cd contains exactly one element, d, which divides n.

Further, we see that m ∈ Cd if and only if (m,n) = d, which happens if and only if

(m/d, n/d) = 1. Thus the number of integers in Cd is the number of integers ≤ n/d which

are relatively prime to n/d–that is, the size of Cd is φ(n/d). And this proves what we

wanted.

5.3 Perfect Numbers and Mersenne Primes

For further reading on the material in this subsection, consult Rosen 7.3, Wikipedia.

Definition 5.18. We say a positive integer n is a perfect number if σ(n) = 2n.

Example 5.19. Famously 6 is perfect, since σ(6) = 1 + 2 + 3 + 6 = 12.

28 is perfect since σ(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56.

Theorem 5.20. The positive even integer n is perfect if and only if n = 2m−1(2m−1) where

m ≥ 2 and 2m − 1 is prime.

Proof. First we show that if 2m − 1 is prime then n = 2m−1(2m − 1) is perfect. Because σ is

multiplicative and we have a formula for it, we have

σ(n) = σ(2m−1(2m − 1)) = σ(2m−1)σ(2m − 1)

=
2m − 1

2− 1
· (1 + 2m − 1) = (2m − 1)2m = 2n.
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Now we want to show that if σ(n) = 2n and n is even, then n = 2m−1(2m − 1) for some

m. So write n = 2st where t is odd. Then

σ(n) = σ(2s)σ(t) =
2s+1 − 1

2− 1
· σ(t) = (2s+1 − 1)σ(t).

But since n is perfect, we know σ(n) = 2n = 2s+1t and thus we have

2s+1t = (2s+1 − 1)σ(t)

and thus 2s+1 divides (2s+1 − 1)σ(t).

But we can see that (2s+1, 2s+1 − 1) = 1, so by Euclid’s Lemma 2s+1|σ(t). So let σ(t) =

2s+1q for some integer q, and we have

2s+1t = (2s+1 − 1)2s+1q

t = (2s+1 − 1)q = 2s+1q − q.

Thus q|t and q 6= t.

Adding q to both sides gives t + q = 2s+1q = σ(t). But if q > 1 then, since q|t and

q 6= t, we have (at least) three distinct positive divisors of t: 1, q, and t. Thus 1 + q + t ≤
σ(t) = q + t which is a contradiction. Thus q = 1, and σ(t) = t+ 1. But if σ(t) = t+ 1 this

implies the only positive factors of t are 1 and t, and thus by definition t is prime. Further

t = (2s+1 − 1)q = 2s+1 − 1.

Thus to find all (even) perfect numbers, we just need to find primes of the form 2m − 1.

This brings us to a famous old category of primes, called the Mersenne primes.

Definition 5.21. If m ∈ N, then Mm = 2m − 1 is called the mth Mersenne number. If Mm

is prime, it is called a Mersenne prime.

Proposition 5.22. If m ∈ N and Mm = 2m − 1 is prime, then m is prime.

Suppose m = ab for 1 < a, b < m. Then

2m − 1 = 2ab − 1 = (2a − 1)(1 + 2a + 22a + · · ·+ 2(b−2)a + 2(b−1)a).

Since a, b > 1, both of these factors are > 1, so 2m−1 is not prime, which is a contradiction.

Remark 5.23. Note that it is not true that if p is prime, then Mp is as well. The smallest

“pernicious Mersenne number”–that is, Mp where p is prime but Mp is not– is M11 = 211−1 =

2047, which we have discussed in class before.
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Mersenne primes provide a relatively easy way to find large primes; the largest known

prime is 274,207,281 − 1, which is a Mersenne prime. The GIMPS (Great Internet Mersenne

Prime Search) is a large distributed computing project to test larger candidate Mersenne

primes.

It was for a long time inaccurately believed that M67 was prime (after Marin Mersenne

wrongly included it on his list of Mersenne primes in the 17th century; he also wrongly

included M257 and excluded M61,M89, and M107. Edouard Lucas showed in 1876 that M67

was composite, but did not find a factor.

In 1903, Frank Nelson Cole gave a completely silent “talk” in which he computed 267− 1

and 193, 707, 721× 761, 838, 257, 287 on the blackboard and got the same number both ways

(a result which he said took him “three years of Sundays” to find). He returned to his seat

without speaking, to applause from the audience.

Though Mp is not always prime for p prime, we have a number of theorems that will help

us decide of Mp is in fact prime.

Theorem 5.24. If p is an odd prime, then any divisor of Mp = 2p−1 is of the form 2kp+1

where k ∈ N.

Proof. Let q be a prime dividing Mp = 2p − 1. By Fermat’s little theorem we know that

2q−1 ≡ 1 mod q and thus q|2q−1 − 1. We can compute that (2p − 1, 2q−1 − 1) = 2(p,q−1) − 1.

But since q|2p − 1, 2q−1 − 1, we know that q|2(p,q−1) − 1 and thus (p, q − 1) > 1. But p is

prime, so (p, q − 1) = p.

Thus p|q−1 so there is a natural number m such that mp = q−1. Since q, p are odd, we

know that m is even, so write m = 2k for k ∈ N. Thus q = 2kp + 1, and any prime divisor

of Mp has the form 2kp + 1. But the product of two numbers of this form is still a number

of this form, and any divisor of Mp is the product of prime divisors, so any divisor has the

form 2kp+ 1.

Corollary 5.25. There are infinitely many primes.

Proof. Suppose there are finitely many primes, and let p be the largest. Then Mp > p is not

prime, and it has some prime factor. But by theorem 5.24, the prime factor must have the

form 2kp+ 1 > p, which is a contradiction.

Example 5.26. Let us decide whether M13 = 213−1 = 8191 is prime. We only need to check

for factors less than
√

8191 ≈ 90. Further, any factor must have the form 2·k ·13+ = 26k+1,
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so we just have to check 27, 53, 79. 27 isn’t prime so we just need to check 53 and 79. But

8191/53 = 154.547 and 8191/79 = 103.684. Thus M13 must be prime.

Now let’s decide if M23 = 223 − 1 = 8, 388, 607 is prime. We only need to check primes

of the form 46k+ 1. The first of these is 47, and we see 8, 388, 607/47 = 178, 481. Thus M23

is not prime.

Remark 5.27. There is a more efficient test to determine whether a Mersenne number is

prime, called the Lucas-Lehmer Test. This could make a good paper topic for someone

familiar with group theory.

Two last comments on this topic: first, all our work on Mersenne primes was specific to

the base 2. We can’t actually extend this work to other bases. Or rather, we can, but it’s

very brief.

Exercise 5.28. Suppose ap − 1 is prime. Then either a ≤ 2 or p = 1.

Second, we’ve only addressed even perfect numbers. It’s actually an open question

whether odd perfect numbers exist, and commonly conjectured that they do not. We do

know a large number of conditions that odd perfet numbers must satisfy:

Fact 5.29. Suppose N is an odd perfect number. Then

• N is not divisible by 105

• N satisfies one of N ≡ 1 mod 12, N ≡ 117 mod 468, or N ≡ 81 mod 324

• N = qap2e11 . . . p2ekk where

– q, p1, . . . , pk are distinct primes

– q ≡ a ≡ 1 mod 4

– The smallest prime factor of N is less than (2k + 8)/3

– Either qa > 1062, or p
2ej
j > 1062 for some j

– N < 24k+1

• The largest prime factor of N is greater than 108, the second largest prime factor is

greater than 104, and the third largest is greater than 100

• N has at least 101 prime factors and at least 10 distinct prime factors, and if 36 |N
then N has at least 12 distincct prime factors.
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• N > 101500

This list of restrictions is sufficiently long that James Joseph Sylvester commented in

1888 that: “...a prolonged meditation on the subject has satisfied me that the existence of

any one such [odd perfect number] its escape, so to say, from the complex web of conditions

which hem it in on all sides would be little short of a miracle.”

5.4 Mobius Inversion

We earlier discussed summatory functions, where we write F (n) =
∑

d|n f(n) for some

function f ; we proved that if f is multiplicative, then so is F . In this section we’d like

to reverse the summatory function process. That is, if we have F (n) can we use that to

compute f(n)?

Well, we’ll start by exploring. We notice that

F (1) = f(1)

F (2) = f(1) + f(2)

F (3) = f(1) + f(3)

F (4) = f(1) + f(2) + f(4)

F (5) = f(1) + f(5)

F (6) = f(1) + f(2) + f(3) + f(6)

and thus

f(1) = F (1)

f(2) = F (2)− f(1) = F (2)− F (1)

f(3) = F (3)− f(1) = F (3)− F (1)

f(4) = F (4)− f(2)− f(1) = F (4)− (F (2)− F (1))− F (1)

= F (4)− F (2)

f(5) = F (5)− f(1) = F (5)− F (1)

f(6) = F (6)− f(3)− f(2)− f(1) = F (6)− (F (3)− F (1))− (F (2)− F (1))− F (1)

= F (6)− F (3)− F (2) + F (1).

We might notice that we seem to always be able to write f(n) as a sum of ±F (n/d) for d|n.

So we might hope we can find an arithmetic function µ that gives a formula

f(n) =
∑
d|n

µ(d)F (n/d).
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Let’s figure out what this function would have to look like. f(1) = F (1) so µ(1) = 1. If p

is a prime, then F (p) = f(1) + f(p) so f(p) = F (p)− F (1). Thus we must have µ(p) = −1.

(Recall that we have µ(d)F (n/d) so µ(p) is the coefficient of F (1)).

By the same logic, we see that F (p2) = f(1) + f(p) + f(p2) so f(p2) = F (p2) − F (p).

Thus if µ(1) = 1 and µ(p) = −1, we have µ(p2) = 0. We can follow the same argument to

show that µ(pk) = 0 for every k > 1.

If we assume that µ is multiplicative, this completely nails down the values of µ at every

number, since we can “compute” it at any prime power. This leads us to the following

definition:

Definition 5.30. We define the Möbius function µ(n) by

µ(n) =


1 n = 1

(−1)r n = p1p2 . . . pr are distinct primes

0 otherwise

In particular, if p2|n for any prime p then µ(n) = 0. µ(n) 6= 0 if and only if n is

square-free.

Remark 5.31. If we think of 1 as the empty product, then we don’t need to define µ(1)

separately, since 1 =
∏0

k=1 pi and then µ(1) = (−1)0.

Example 5.32.

µ(1) = 1 µ(4) = 0

µ(2) = −1 µ(5) = −1

µ(3) = −1 µ(6) = 1.

We can compute that

µ(330) = µ(2 · 3 · 5 · 11) = (−1)4 = 1

µ(660) = µ(22 · 3 · 5 · 11) = 0

µ(2310) = µ(2 · 3 · 5 · 7 · 11) = (−1)5 = −1.

Lemma 5.33. The Möbius function µ(n) is multiplicative.

Proof. Suppose m,n are relatively prime positive integers. We want to show that µ(mn) =

µ(m)µ(n). We need to check this case-by-case.
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If m = 1 then µ(m) = 1, so µ(mn) = µ(n) = µ(m)µ(n). Similarly if n = 1 then

µ(mn) = µ(m) = µ(m)µ(n).

Ifm is divisible by a square of a prime, then so ismn, so µ(mn) = 0 = 0·µ(n) = µ(m)µ(n).

Similarly, if n is divisible by a square of a prime, then so is mn, so µ(mn) = 0 = µ(m) · 0 =

µ(m)µ(n).

Finally, suppose m,n 6= 1 and neither is divisible by a square of a prime. Then we we

can write m = p1 . . . pk and n = q1, . . . , q` where the pi and the qi are all distinct. Then we

have µ(m) = (−1)k, µ(n) = (−1)`. We also have mn = p1 . . . pkq1 . . . q` all distinct factors,

so µ(mn) = (−1)k+` = (−1)k(−1)` = µ(m)µ(n).

Remark 5.34. The Möbius function is not completely multiplicative, since µ(2) = −1 but

µ(4) = 0.

Since we have a multiplicative function, the next step is to study its summatory function.

Fortunately, the Möbius function has a particularly simple summatory function:

Lemma 5.35. The summatory function of the Möbius function satisfies the formula

F (n) =
∑
d|n

µ(d) =

{
1 n = 1

0 n > 1.

Proof. When n = 1, we have F (1) =
∑

d|1 µ(d) = µ(1) = 1.

Now suppose n > 1. We know that F is multiplicative, so we just need to evaluate it at

prime powers. But

F (pk) =
∑
d|pk

µ(d) = µ(1) + µ(p) + · · ·+ µ(pk)

= 1− 1 + 0 + 0 + · · ·+ 0 = 0

as long as k > 0.

Suppose n = pa11 . . . pakk . Then

F (n) =
k∏

i=1

F (paii ) =
k∏

i=1

0 = 0.

So far we’ve studied some properties of our Möbius function, but we haven’t actually

proven that it does the thing we want it to do. Recall we were hoping to find an “inversion

formula” that allows us to recapture a function from its summative function. If such a

function exists and is multiplicative, it must be the Möbius function; but now we’re ready

to prove that the Möbius function does in fact have this property.
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Theorem 5.36 (Möbius Invrsion Formula). Suppose f is an arithmetic function (which need

not be multiplicative!), and F is the summatory function of f , given by

F (n) =
∑
d|n

f(d).

Then, for any natural number n, we have

f(n) =
∑
d|n

µ(d)F (n/d).

Proof. The proof of this is a fairly straightforward exercise in manipulation of sums, but we

must be careful of our indices.

Fix an integer n. We have

∑
d|n

µ(d)F (n/d) =
∑
d|n

µ(d)
∑

e|(n/d)

f(e)


=
∑
d|n

∑
e|(n/d)

µ(d)f(e).

Now we think about the indices. We’re summing over all pairs of integers d, e such that d|n
and e|n/d. But this is the same as summing over all pairs of integers d, e such that e|n and

d|(n/e). (Suppose d|n and em = n/d. Then emd = n so e|n, and md = n/e so d|n/e. We

can do the same argument in the opposite direction). Thus we have∑
d|n

∑
e|(n/d)

µ(d)f(e) =
∑
e|n

∑
d|(n/e)

µ(d)f(e)

=
∑
e|n

f(e)

 ∑
d|(n/e)

µ(d)

 .

But recall that
∑

d|(n/e) µ(d) = 0 unless n/e = 1, which happens precisely when e = n, and in

this case the sum is equal to 1. So every term of this sum is 0 except the term corresponding

to e = n, which gives us ∑
e|n

f(e)
∑

d|(n/e)

µ(d) = f(e) · 1 = f(e).

This is all an example of a process called Dirichlet convolution, which you will see more

about on the homework.
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Corollary 5.37. If n is a natural number, we have

n =
∑
d|n

µ(d)σ(n/d) =
∑
d|n

µ(n/d)σ(d)

1 =
∑
d|n

µ(d)τ(n/d) =
∑
d|n

µ(n/d)τ(d).

Corollary 5.38. Let f be an arithmetic function and F (n) =
∑

d|n f(n) be the summatory

function of f . If F is multiplicative, then so is f .

Remark 5.39. Notice this is the converse of proposition 5.13, which said that if f is multi-

plicative, then so is its summatory function.

Proof. Suppose m,n are relatively prime natural numbers. We want to show that f(mn) =

f(m)f(n). First recall that if d|mn then we can uniquely write d = d1d2 with d1|m, d2|n
(since m,n share no factors in common), and (d1, d2) = 1. Then

f(mn) =
∑
d|mn

µ(d)F
(mn
d

)
=

∑
d1|m,d2|n

µ(d1d2)F

(
mn

d1d2

)

=
∑

d1|m,d2|n

µ(d1)µ(d2)F

(
m

d1

)(
n

d2

)

=

∑
d1|m

µ(d1)F (m/d1)

∑
d2|n

µ(d2)F (n/d2)


= f(m)f(n).
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