Math 322 Fall 2016 Number Theory HW 11 Due Wednesday, November 30

There is no starred problem this week!

For the remainder of these problems, I encourage you to collaborate with your classmates, as well as to discuss them with me.

1. Let $k \geq 3$ be an integer. Then prove that

$$
\operatorname{ord}_{2^{k}} 5=\phi\left(2^{k}\right) / 2=2^{k-2} .
$$

(Hint: we know that the order divides 2^{k-1} and is not equal to 2^{k-1}; the largest it can possibly be is 2^{k-2}. So we just have to prove it's no smaller).
2. (6 points total)

Let m be a natural number with primitive root r, and let a, b be relatively prime to m. Then prove that:
(a) $\operatorname{ind}_{r} 1 \equiv 0 \bmod \phi(m)$
(b) $\operatorname{ind}_{r}(a b) \equiv \operatorname{ind}_{r} a+\operatorname{ind}_{r} b \bmod \phi(m)$
(c) $\operatorname{ind}_{r} a^{k} \equiv k \operatorname{ind}_{r} a \bmod \phi(m)$.
3. Find all solutions to $7 x^{9} \equiv 4 \bmod 17$.
4. Find all solutions to $5^{x} \equiv 4 \bmod 17$.
5. (a) Compute the index base 2 of 15 modulo 19.
(b) Compute the index base 3 of 15 modulo 19.
(c) Find all natural numbers less than 13 which are squares modulo 13.
(d) Find all natural numbers less than 13 which are cubes modulo 13.

