Math 322 Fall 2016 Number Theory HW 4 Due Friday, September 30

You may not discuss the starred problem with classmates, though you should of course feel free to discuss it with me as much as you like. Linguistic precision is important for this problem.
(\star) Starred Problem: Show that multiplicative inverses $\bmod m$ are unique up to congruence. That is, if a, b, c are integers, and m is a positive integer, and $a b \equiv 1 \bmod m$ and $a c \equiv 1 \bmod m$, then $b \equiv c \bmod m$.

For the remainder of these problems, I encourage you to collaborate with your classmates, as well as to discuss them with me.

1. Use Fermat's method of squares to factor 14647.
2. Let S be a set of m integers such that no element of S is congruent to any other element of $S \bmod m$. Prove that S is a complete system of residues.
3. Let a, b, m, n be integers with $m, n>0$ and $m \mid n$. Prove that if $a \equiv b \bmod n$, then $a \equiv b \bmod m$.
4. Prove that an integer is divisible by eleven if and only if the sum of its even-placed base 10 digits minus the sum of its odd-placed digits is divisible by eleven. That is, if $n=n_{0}+n_{1} \cdot 10+n_{2} \cdot 10^{2}+\cdots+n_{k} 10^{k}$, then $11 \mid n$ if and only if

$$
\text { 11| } \sum_{i \text { even }} n_{i}-\sum_{i \text { odd }} n_{i}=n_{0}-n_{1}+n_{2}-n_{3}+\ldots
$$

5. Fix an integer $m>0$, and suppose that m has the following property: if a is an integer and $m \nmid a$, then a has a multiplicative inverse $\bmod m$. That is, m is an integer such that every integer is either divisible by m, or has a multiplicative inverse $\bmod m$. Then prove that m is prime.
6. Find a solution to each system of congruences:
(a)

$$
5 x \equiv 3 \quad \bmod 23
$$

(b)

$$
\begin{array}{llll}
x \equiv 0 & \bmod 2 & x \equiv 0 & \bmod 3 \\
x \equiv 1 & \bmod 5 & x \equiv 6 & \bmod 7
\end{array}
$$

(c)

$$
\begin{array}{llll}
x \equiv 2 & \bmod 11 & x \equiv 3 & \bmod 12 \\
x \equiv 4 & \bmod 13 & x \equiv 5 & \bmod 17 \\
x \equiv 6 & \bmod 19 & &
\end{array}
$$

