Math 322 Fall 2016 Number Theory HW 9
 Due Friday, November 11

You may not discuss the starred problem with classmates, though you should of course feel free to discuss it with me as much as you like. Linguistic precision is important for this problem.
(\star) Starred Problem: Let b be an inverse of a modulo n. Prove that $\operatorname{ord}_{n} a=\operatorname{ord}_{n} b$.

For the remainder of these problems, I encourage you to collaborate with your classmates, as well as to discuss them with me.
1.

Definition 1. If f, g are arithmetic functions, we define the Dirichlet convolution of f and g to be

$$
(f * g)(n)=\sum_{d \mid n} f(d) g(n / d)
$$

We define the function $\iota(n)$ by

$$
\iota(n)= \begin{cases}1 & n=1 \\ 0 & n>1\end{cases}
$$

We say g is the inverse of f (under Dirichlet convolution) if $f * g=\iota$.
(a) Show that $f * g=g * f$; that is, Dirichlet convolution is commutative.
(b) Show that $\iota(n)$ is multiplicative.
(c) Show that $\iota * f=f$ for any arithmetic function f.
2. Prove that if f and g are multiplicative functions, then so is $f * g$.
3. Prove that if n is a natural number, then $\mu(n) \mu(n+1) \mu(n+2) \mu(n+3)=0$.
4.

Definition 2. The von Mangoldt function Λ is defined by

$$
\Lambda(n)=\left\{\begin{array}{cc}
\log p & n=p^{k} \\
\text { for } p \text { prime, } k \in \mathbb{N} \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Show that $\sum_{d \mid n} \Lambda(d)=\log n$ for any natural number n.
(Hint: recall $\left.\log \left(a^{k} b^{\ell}\right)=k \log (a)+b \log (\ell)\right)$.
(b) Use Möbius inversion to show that

$$
\Lambda(n)=-\sum_{d \mid n} \mu(d) \log d
$$

(Hint: treat the case $n=1$ separately).
5. Compute
(a) $\mu(12)$
(b) $\mu(210)$
(c) $\operatorname{ord}_{11} 3$
(d) $\operatorname{ord}_{10} 7$
6. (a) Show that 5 is a primitive root of 6 .
(b) Show that 12 has no primitive roots.

