
Jay Daigle Occidental College Math 322: Number Theory

1 Integers and Divisibility

In this course we primarily want to study the factorization properties of integers. So we

should probably start by reminding ourselves how integers and factorization work.

Much of this material was covered in Math 210, but we shall review it so we can use it

during the rest of the course, as well as perhaps putting it on a somewhat firmer foundation.

1.1 The integers and the rationals

For further reading on the material in this subsection, consult Rosen 1.1–1.3; PMF 1.1–

1.2, 2.1–2.2.

Definition 1.1. The integers are elements of the set Z = {. . . ,−2,−1, 0, 1, 2, . . . }.
The natural numbers are elements of the set N = {1, 2, . . . } of positive integers.

The rational numbers are elements of the set Q = {p/q : p, q ∈ Z}.

Remark 1.2. 1. Some sources include 0 as a natural number; in this course we will not,

and none of the four suggested texts do so.

2. You may feel like these aren’t really definitions, and you’re not entirely wrong. A rigor-

ous definition of the natural numbers is an extremely tedious exercise in mathematical

logic; famously, Russell and Whitehead feature the proposition that “1 + 1 = 2” on

page 379 of Principia Mathematica.

We will simply trust that everyone in this course understands how to count.

The natural numbers have two very important properties.

Fact 1.3 (The Well-Ordering Property). Every subset of the natural numbers has a least

element.

This may seem obviously true, but is important for proving a number of results. (Compare

the integers, the rationals, and the reals, all of which lack this property).

Fact 1.4 (The Successor Property). Every natural number n has a successor n + 1. Every

natural number except 1 is the successor of some natural number. In particular there is no

greatest natural number.

This successor property underlies the principle of induction, which should be familiar to

you from Math 210. It has two different but equivalent formulations:
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Fact 1.5 (The Principle of Weak Induction). Let P (n) be some statement about the natural

number n. Then if P (1) is true, and if P (k) implies P (k + 1), then P (n) is true for every

natural number n.

Fact 1.6 (The Principle of Strong Induction). Let P (n) be some statement about the natural

number n. Then if P (n) is true whenever P (k) is true for all k < n, then P (n) is true for

every natural number n.

Remark 1.7. As stated, the principle of strong induction doesn’t separately require a base

case (i.e. it does not single out the case n = 1). Why not?

1.2 Divisibility

For further reading on the material in this subsection, consult Rosen 1.5; PMF 3.1.

Definition 1.8. If a and b are integers, we say that a divides b and write a|b if there is an

integer m such that am = b. We say a is a divisor or factor of b.

If there is no such integer, we may say that a does not divide b, and write a 6 |b.

Remark 1.9. The requirement that m is an integer is very important; if we allowed m to be

a rational number, every integer would divide every other.

Note that if a|b then a 6= 0. Rosen includes this in the definition but it is in fact implied

by the rest of the definition.

Example 1.10. • 2|6

• −2|6

• 4 6 |6

• 13|221

• 3 6 |221

• 17|0

• 24 6 |12

Much of this course will be spent studying properties related to divisibility; for now we’ll

prove a few basic facts about divisibility.

Lemma 1.11. If a, b, c are integers with a|b and b|c, then a|c. (In other words, the relation-

ship | is transitive).

Proof. a|b so there is some integer m with am = b. And b|c so there is integer n with bn = c.

Thus amn = c, and since mn is an integer, we have a|c by definition.
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Lemma 1.12. If a, b are natural numbers and a|b, then 1 ≤ a ≤ b.

Proof. Since a is a natural number, we know that 1 ≤ a. So we just need to show that a ≤ b.

We know a = mb for some integer m; since a, b ≥ 0 we must have m ≥ 0, and thus 1 ≤ m

(since clearly m 6= 0 if a 6= 0). Multiplying this inequality by a we have a ≤ am = b.

Lemma 1.13 (Linear Combinations). If a, b, c,m, n are integers, and a|b and a|c, then

a|mb+nc. We can say that if a divides b and c then it divides any integer linear combination

of them.

Proof. We know there are integers p and q so that ap = b and aq = c. Then we can see

a(pm+ qn) = apm+ aqn = bm+ cn, and since pm+ qn is an integer, we have a|mb+ nc by

definition of “divides”.

1.3 The Greatest Common Divisor

For further reading on the material in this subsection, consult Rosen 3.3, PMF 3.4, Stein

1.1.2.

A useful tool for studying the divisibility and factorization properties of integers is the

concept of the greatest common divisor.

Definition 1.14. If a and b are integers, then the greatest common divisor of a and b,

written gcd(a, b) or just (a, b), is the largest (positive) integer d that divides both a and b.

We can similarly define gcd(a1, a2, . . . , an) to be the largest (positive) integer that divides

each ai.

Remark 1.15. The notations gcd(a, b) and (a, b) are interchangeable. We’ll mostly use (a, b)

since it is shorter and easy to write; when we’re worried about ambiguity we’ll write out the

full expression.

Example 1.16.

• (4, 6) = 2

• (4, 8) = 4

• (2, 3) = 1

• (23, 47) = 1

• (−81, 36) = 9

• (−4, 4) = 4

• (1, a) = gcd(a, 1) = 1

for any integer a.

• (0, a) = (a, 0) = |a|

for any integer a.
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Remark 1.17. We define (0, 0) = 0 for boring technical reasons. This will almost never come

up. (If you’re familiar with the concept of an ideal, notice that the ideal generated by a and

b is also the ideal generated by (a, b)–and the notation itself is suggestive.)

Fact 1.18. For any integers a, b, (a, b) = (b, a).

Exercise 1.19. Prove that if a and b are integers, then (a, b) exists and is unique.

The greatest common divisor, as the name suggests, tells us how much two integers have

in common (with respect to factorization). Sometimes integers have nothing in common:

Definition 1.20. If (a, b) = 1 then we say a and b are relatively prime or coprime.

Example 1.21. • 2 and 3 are relatively prime. 4 and 7 are relatively prime. 12 and 35

are relatively prime.

• 4 and 6 are not relatively prime. 12 and 34 are not relatively prime. 1000 and 18 are

not relatively prime.

We would like to split a pair of numbers into “the bit they have in common” and “the

bit that’s different.” (We do this intuitively, really; we can look at 4 and 6 and see they have

a 2 in common, and then factors of 2 and 3 respectively that they don’t share). But we can

be a bit more precise here:

Proposition 1.22. If a, b are integers with (a, b) = d, then (a/d, b/d) = 1.

Proof. Let a, b be integers and (a, b) = d. Both a/d and b/d are integers; suppose there is a

positive integer e that divides both of them. Then we have integers m,n with

em = a/d en = b/d

dem = a den = b

and thus de divides both a and b.

But d is the greatest common divisor of a and b, so d ≥ de, and since e ≥ 1 we must have

e = 1. So the only positive integer that divides both a/d and b/d is 1, and so (a/d, b/d) = 1

as desired.

Thus given two integers a, b, we have split them into the common part (a, b), and the

relatively prime parts a/d, b/d.

Corollary 1.23. If a and b 6= 0 are integers, then a/b = p/q for some integers p, q with

(p, q) = 1.
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Proof. Let d = (a, b) and set p = a/d, q = b/d. Then (p, q) = 1 by 1.22, and p/q =

(a/d)/(b/d) = a/b.

This allows us to talk about fractions being in lowest terms.

1.4 The GCD and linear combinations

For further reading on the material in this subsection, consult Rosen 3.3, PMF 3.4–3.5,

Stein 1.1.2, Shoup 1.1.

Now that we understand how the greatest common divisor works, we want to see how it

interacts with arithmetic–addition and multiplication.

Lemma 1.24. Let a, b, c be integers. (a + cb, b) = (a, b).

Proof. Let a, b, c be integers. Suppose d is a divisor of both a and b. Then by lemma 1.13

on linear combinations we know that d divides a + cb. Thus d is a common divisor of a and

a + cb.

Conversely suppose d divides both b and a + cb. We can see that a = (a + cb) − c(b) is

a linear combination of b and a + cb, and thus again by lemma 1.13 we see that d divides b.

Thus d is a common divisor of a and b.

So we have proven that the set of common divisors of a and b is exactly the same as

the set of common divisors of a and a + cb. Thus the greatest common divisor must be the

same.

This tells us that if we know the gcd of two numbers, we can add a multiple of the second

number to the first without changing anything.

Example 1.25. • We know that (2, 3) = 1. Thus we also have (5, 3) = (8, 3) = (11, 3) =

(30002, 3) = 1.

• We know that (8, 6) = 2. Thus (14, 6) = (68, 6) = 2, and also (8, 14) = (8, 86) = 2.

• But note we can only change one thing at a time. (15, 20) = 5 but (15 + 20, 20 + 15) =

(35, 35) = 35.

If we want to talk about addition and multiplication, it is useful to use the idea of a

linear combination (which was already referenced in Lemma 1.13 ).

Definition 1.26. If a and b are integers, then an integer linear combination of a and b is a

sum of the form ma + nb where m,n are both integers.
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Example 1.27. What are the linear combinations of 4 and 6? We clearly can get 4 and

6, as well as 8 = 2 · 4, 10 = 4 + 6, 12 = 2 · 6. Linear combinations are not unique, as in

24 = 3 · 4 + 2 · 6 = 6 · 4 = 4 · 6.

We can also get smaller numbers: (−1)·4+6 = 2, (−3)·4+2·6 = 0, and (−3)·4+(−5)·6 =

−42.

Example 1.28. What are some linear combinations of 5 and 7? We can get 10, 12, 14 and

so on. We can get 7− 5 = 2. So we can get 2 · 7− 2 · 5 = 4, and 6 and 8.

Is this the smallest postive result we can get? No! We see that 3 · 5− 2 · 7 = 15− 14 = 1.

Thus we can always get 3n ·5−2n ·7 = n and we can get any integer as a linear combination

of 5 and 7.

You might notice that in both of these cases, the smallest result we can get is the greatest

common denominator. This is in fact a general theorem, but we need an important (and

familiar!) result first.

Lemma 1.29 (Division Algorithm). If a and b are integers and b > 0, then there are unique

integers q and r such that a = bq + r with 0 ≤ r < b.

Remark 1.30. I describe this as familiar because this is just the division-with-remainder that

we all learned in grade school. When we do the division b/a, then q is the quotient and r is

the remainder.

Though this is traditionally called an “algorithm”, the theorem itself doesn’t give an

algorithm. There is an algorithm presented in the proof, which is in essense division by

repeated subtraction.

Proof. We use the well-ordering property.

Consider the set S of non-negative integers of the form a − bk for k an integer. S

is nonempty because when k is sufficiently small (possibly negative)–in particular when

k < a/b–we will have a− bk ≥ 0.

Since S is a set of non-negative integers, by the well-ordering property it has a least

element r = a− bq. We will take these values as the values of r, q given in the theorem. By

construction r ≥ 0.

Suppose r ≥ b. Then r − b ≥ 0 and thus r − b = a − b(q + 1) is an element of S which

is smaller than r, contradicting minimality. Thus 0 ≤ r < b. This proves that the pair q, r

exists.

(You can think of this process as conducting division by repeated subtraction. The last

step is observing that if r ≥ b we can conduct one additional subtraction).
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Now let us prove this pair is unique. Suppose we can write a = q1b+ r1 = q2b+ r2, giving

us two representations of a as quotient and remainder. By subtracting these two equations

we get

q1b + r1 − (q2b + r2) = 0

b(q1 − q2) = r2 − r1

and thus b divides r2 − r1.

But since 0 ≤ r1, r2 < b, we know that −b < r2− r1 < b. Since b cannot divide a number

between 0 and b, we must have r2 − r1 = 0 and thus r2 = r1. Consequently q2 = q1 as well,

and the quotient and remainder pair is unique.

Proposition 1.31. If a and b are integers and at least one is nonzero, then (a, b) is the least

positive integer that is an integer linear combination of a and b.

Proof. By the well ordering property there is a least positive integer that is a linear combi-

nation of a and b; call it d = ma + nb. We first wish to show that d is a common divisor of

a and b—that is, that d|a and d|b.
By the division algorithm, we can write a = dq + r for 0 ≤ r < d. But then we can write

r = a− dq as a linear combination of a and q; since d is a linear combination of a and b, this

means that r is a linear combination of a and b. In particular

r = a− dq = a− (ma + nb)q = (1−mq)a− (nq)b.

Thus r is a linear combination of a and b but 0 ≤ r < d. Since d is the least positive linear

combination, we must have r = 0

Thus a = dq and so d divides a. An identical argument shows that d divides b, so g is a

common divisor of a and b.

Now we much show that d is the greatest common divisor. Suppose c is some integer

such that c|a and c|b. Then by lemma 1.13 on linear combinations, c|ma+ nb = d, and thus

c ≤ d. Therefore d = (a, b).

Note that the argument at the end of this proof generalizes:

Proposition 1.32. If a and b are non-zero integers, then a positive integer d is equal to

(a, b) if and only if

• d|a and d|b, and
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• If c|a and c|b, then c|d.

Proof. Let d = (a, b). Then clearly d|a and d|b. Suppose c|a and c|b; then by the previous

result d = ma + nb and c|ma + nb = d.

Conversely, suppose d|a and d|b, and that whenever c|a and c|b then c|d. Then d is a

common divisor of a and b. In particular set c = (a, b). Then we know that c|d, and thus

c ≤ d. But since d is a common divisor we also know that c ≥ d, so c = d.

Remark 1.33. This gives an alternate characterization of the greatest common divisor that

does not depend on the usual notion of “less than” or “greater than.”

In fact, we can think of divisibility as giving a partial order on the integers; then the

greatest common denominator is the greatest common divisor under this partial order as

well.

Corollary 1.34. Integers a and b are relatively prime if and only if there are integers m

and n such that ma + nb = 1.

Proposition 1.35. If a and b are integers, then the set of linear combinations of a and b is

the set of integer multiples of (a, b).

Proof. Set d = (a, b). We first show that every linear combination of a and b is a multiple

of d: since d|a and d|b, then d divides any linear combination of them (by lemma 1.13 ).

Now let us show that every multiple of d is a linear combination of a and b. We know

that d is a linear combination of a and b, so write d = ma + nb. Let kd be some multiple of

d. Then kd = k(ma + nb) = (km)a + (kn)b is a linear combination of a and b.

Corollary 1.36 (Bezout’s theorem). If a and b are integers, then there are integers m and

n such that ma + nb = (a, b).

Remark 1.37. Bezout’s theorem is actually a much more general theorem in algebraic geome-

try about solutions of polynomial equations (alternatively, about the intersections of curves).

It was named for Étienne Bézout, and first proved by Claude Bachet.

(Stigler’s Law of Eponymy, attributed to Robert Merton, says that no scientific discovery

is named after its actual discoverer).

1.5 The Euclidean Algorithm

For further reading on the material in this subsection, consult Rosen 3.4, PMF 4.1–4.2,

Stein 1.1.2.
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In the previous subsection we saw that the greatest common divisor of two numbers is

the least positive linear combination of them. But this doesn’t quite tell us how to find

it. Fortunately, there is a simple algorithm that allows us to find the greatest common

denominator of any pair of numbers quite easily.

Unlike the “division algorithm” this is actually an algorithm–which means it gives a set of

steps that, when followed, reliably returns an answer. However, it uses the division algorithm

to make its steps work.

The basic idea is to repeatedly subtract copies of the smaller number from the larger

number, switching repeatedly, until we get to zero. Because linear combinations don’t change

divisibility, this won’t ever change the greatest common denominator, and so we can change

our starting (large) problem into a smaller, easier problem. Repeating this step gives us an

answer.

To make that argument more rigorous, we need to recall the following lemma:

Lemma 1.38. If a, b are integers and a = bq + r, then (a, b) = (b, r)

Proof. This is precisely Lemma 1.24.

This allows us to compute gcds easily by reducing big gcd computations to smaller ones.

Example 1.39. Suppose we want to compute (36, 56). Then 56 = 1 · 36 + 20 so (56, 36) =

(20, 36). Now we can see that 36 = 1·20+16 and thus (20, 36) = (20, 16). Then 20 = 1·16+4

so (20, 16) = (4, 16) = 4. Thus (36, 56) = 4.

Theorem 1.40 (Euclidean Algorithm). Let a, b be integers with a ≥ b > 0. Set r0 = a, r1 =

b, and inductively define rn by the division algorithm, setting r + n02 = rn−1qn−1 + rn. We

have r1 > r2 > . . . rk > 0, and if rk is the last nonzero remainder obtained this way, then

rk = (a, b).

Sketch of proof: By lemma 1.38 we know that each step doesn’t change the gcd. Thus the

gcd at the end is the gcd at the beginning. If we repeat our step we will eventually get one

value to 0, and then the gcd of the two will be the other value.

Example 1.41. Let us compute (20, 78). We have 78 = 3 · 20 + 18 so (20, 78) = (20, 18).

Then 20 = 1 · 18 + 2 so (20, 18) = (2, 18).

We can easily see that this is 2, but if we want to keep using the algorithm we compute

that 18 = 9 · 2 + 0 so (2, 18) = (2, 0) = 2.

In the language of the algorithm, we have r0 = 78, r1 = 20, r2 = 18, r3 = 0 = (20, 78).
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This might seem overly difficult–isn’t it easier to just list all the factors? (Or, for those

of you who are sneaking ahead, to break the numbers into their prime factors?)

And indeed for small problems this is easier; most of you could probably compute (20, 78)

in your heads. But as the numbers in question get larger—much larger—factorization gets

much harder. And Euclid’s algorithm does not.

Fact 1.42 (Lamé). For any pair of natural numbers a, b, the Euclidean algorithm takes at

most log2(ab) steps to find (a, b).

For any pair of natural numbers a > b, the Euclidean algorithm takes at most 5 log10(b)

steps to find (a, b).
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