Math 322 Fall 2017
Number Theory Final Exam Practice Solutions

1. Let p be an odd prime. Show that —1 is a quartic (or fourth-power) residue if and
only if p=1 mod 8. (Hint: apply indices to the equation * = —1 mod p).

Solution: Let r be a primitive root, and consider the equation z* = —1 mod p.

This is equivalent to 4ind, x = ind,(—1) = (p — 1)/2 mod p — 1. If p — 1 is divisible
by 8 then this is equivalent to ind,z = (p — 1)/8 mod (p — 1)/ ged(p — 1,4), which
has a solution, and thus —1 is a quartic residue.
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Now for the converse assume x —1 mod p has a solution, and set y = ind, x. We

see that —x is also a solution, and
ind,(—z) =ind,(—-1) +ind,x=(p—1)/24+y mod p— 1.

and thus we can assume without loss of generality that 0 <y < (p —1)/2.

We have 4y = (p—1)/2 mod p—1, and thus 4y = (p—1)/2+ k(p — 1). But we know
that 4y < 2(p — 1) so either 4y = (p — 1)/2 or 4y = 3(p — 1) /2.

In the first case, we have 8y + 1 = p, and thus p =1 mod 8. In the latter case we see
that since 3 /8 we must have 3|y, and get 8(y/3) + 1 = p, and again p =1 mod 8.

2. Evaluate (%) and (%) using Euler’s criterion, and again using Gauss’s lemma.

Solution: By Euler’s criterion, we have

(1—71) =712 =75 =52.7=3.7= -1 mod 11

(3)-

By Gauss’s lemma, we see that

(-1)>=—1 mod 13.

7,14,21,28,35 = 7,3, 10,6, 2

has 3 elements greater than 11/2, so s =3 and (£) = (-1)* = —1.

Similarly,
5,10, 15,20, 25,30 = 5,10,2,7,12,4

has three elements greater than 13/2 and thus s = 3, and we have (&) = (—1)* = —1.



. Suppose a is a quadratic residue of an odd prime p. Show that —a is a quadratic
residue of p if and only if p=1 mod 4.
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and we know that <_71> = 1if and only if p =1 mod 4. Thus (7> = 1 if and only

Solution: We have

if p=1 mod 4, and thus —a is a quadratic residue if and only if p =1 mod 4.

. Evaluate (%) and (%) using Eisenstein’s lemma.

Solution: We compute
T(3,7)=|3/7] +16/7+19/7] =04+0+1=1

3 T(3,7) _ 1 _
(2) = comen = cay =1

T(5,11) = [5/11] + [ 10/11] + [15/11] 4 [20/11] + |25/11] =0+ 04+ 1+1+2=4
(%) — (_1)T(5,11) — (_1)4 -1

. Calculate:

( 641
(d %) (This problem is poorly posed because the bottom is composite, sorry).
(e) (329)

Solution:
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() (1) = (357) (5¢)
(15r) (51) = (=112 =150 () = (%) = (§) = -1
(5r) (51) = (=112 =150 () = (%§) = (5) =1
Thus (357) = (~1)(1) = -1
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() (3599)(328) = —1s0 (289) = —(22) = —(32) = —(5%5) (5%) (%) =
() (52%)
(35) (252) = ~1 50 (555) = —(%%82) = =(3) = ~(-1) =1
(3255) (252) = 150 (;25) = (222) = ().

6. Suppose p is an odd prime. Show that %) islifp=41 mod 12 andis —1if p=+5
mod 12.

Solution: We have (%) (8) = (—1)¥*®=/2 whichis 1 if p=1 mod 4 and is —1

if p= —1 mod 4. Then we see that (g) =1lifp=1 mod3 andis —1ifp = 2
mod 3. Using the Chinese Remainder Theorem to combine these facts, we get the
desired conclusion.

7. Using the law of Quadratic Reciprocity, prove the following theorem:
Theorem 1. Suppose p is an odd prime, p fa, and q is a prime with p = ¢ mod 4a.

men (5) = (3)

This is in fact equivalent to the law of Quadratic Reciprocity, and is the form in which
Euler originally proved it.

Solution: First assume a is odd. Then, using quadratic reciprocity, we have

(%) <§> — (—1)P-D/2a-1)2
(g) (g) _ (—1)a-Dr2-D/2

Since ¢ = p mod a we know that (5) = (%), and since p = ¢ mod 4 we know that
(p—1)/2 = (¢ —1)/2 mod 2 and thus (—1)P~D/2@=D/2 = (_1)(a=D/2a=1)/2 Thys

()= 5)

Now suppose a = 2¥b where b is odd. We have

()-(5)6)-G)0)
(2) v = -yt

p

since p = ¢ mod 4a and thus p = ¢ mod 8. Thus <%) = (ﬁ> (9> = (ﬁ) <§> =

(5):

8. Find a congruence describing all odd primes for which 5 is a quadratic residue.

Solution: Let p be an odd prime. Then (%) (2) = (-1)*®=Y/2 = 1 and thus

<§> = (g) We can compute that p is a quadratic residue modulo 5 if p = 1 mod 5
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or p=4 mod 5, that is, if p = &1 mod 5. Thus 5 is a quadratic residue modulo p if
and only if p = +1 mod 5.

. Letp=1+8-3-5-7-11-13-17-19-23 = 892,371,481. This number is prime (don’t
bother trying to prove this yourself). Prove that if ¢ is a prime and ¢ < 23, then ¢ is
a quadratic residue modulo p.

Conclude that there is no quadratic nonresidue of p less than 29, and thus no primitive
root less than 29.

Solution: Suppose ¢ < 23 is an odd prime. Then we have

(%) (S) = (—1)PD2a/2 =
9)-()-()-

since p =1 mod ¢. Thus ¢ is a quadratic residue modulo p.

since 8|p — 1. Thus

Now we need to check 2 separately. We have see that (%) = 1 since p=1 mod 8.

Now suppose 1 < n < 28. Then n is a product of primes < 23, and since each of
these primes is a quadratic residue modulo p, their product is also a quadratic residue
modulo p (e.g. since the Legendre symbol is multiplicative). Thus n is a quadratic
residue modulo p.

Now suppose we have a primitive root r. We know that » must be a quadratic non-
residue modulo p, since r?~1/2 £ 1 mod p by definition of primitive root. Thus r £ 29
by the previous argument.



