Math 322 Fall 2017 Number Theory Final Exam Practice Solutions

1. Let p be an odd prime. Show that -1 is a quartic (or fourth-power) residue if and only if $p \equiv 1 \bmod 8$. (Hint: apply indices to the equation $x^{4} \equiv-1 \bmod p$).
Solution: Let r be a primitive root, and consider the equation $x^{4} \equiv-1 \bmod p$. This is equivalent to $4 \operatorname{ind}_{r} x \equiv \operatorname{ind}_{r}(-1) \equiv(p-1) / 2 \bmod p-1$. If $p-1$ is divisible by 8 then this is equivalent to $\operatorname{ind}_{r} x \equiv(p-1) / 8 \bmod (p-1) / \operatorname{gcd}(p-1,4)$, which has a solution, and thus -1 is a quartic residue.
Now for the converse assume $x^{4} \equiv-1 \bmod p$ has a solution, and set $y=\operatorname{ind}_{r} x$. We see that $-x$ is also a solution, and

$$
\operatorname{ind}_{r}(-x) \equiv \operatorname{ind}_{r}(-1)+\operatorname{ind}_{r} x \equiv(p-1) / 2+y \quad \bmod p-1
$$

and thus we can assume without loss of generality that $0 \leq y<(p-1) / 2$.
We have $4 y \equiv(p-1) / 2 \bmod p-1$, and thus $4 y=(p-1) / 2+k(p-1)$. But we know that $4 y<2(p-1)$ so either $4 y=(p-1) / 2$ or $4 y=3(p-1) / 2$.
In the first case, we have $8 y+1=p$, and thus $p \equiv 1 \bmod 8$. In the latter case we see that since $3 \nless 8$ we must have $3 \mid y$, and get $8(y / 3)+1=p$, and again $p \equiv 1 \bmod 8$.
2. Evaluate $\left(\frac{7}{11}\right)$ and $\left(\frac{5}{13}\right)$ using Euler's criterion, and again using Gauss's lemma.

Solution: By Euler's criterion, we have

$$
\begin{aligned}
& \left(\frac{7}{11}\right) \equiv 7^{(11-1) / 2} \equiv 7^{5} \equiv 5^{2} \cdot 7 \equiv 3 \cdot 7 \equiv-1 \bmod 11 \\
& \left(\frac{5}{13}\right) \equiv 5^{6} \equiv(-1)^{3} \equiv-1 \quad \bmod 13
\end{aligned}
$$

By Gauss's lemma, we see that

$$
7,14,21,28,35 \equiv 7,3,10,6,2
$$

has 3 elements greater than $11 / 2$, so $s=3$ and $\left(\frac{7}{11}\right)=(-1)^{3}=-1$.
Similarly,

$$
5,10,15,20,25,30 \equiv 5,10,2,7,12,4
$$

has three elements greater than $13 / 2$ and thus $s=3$, and we have $\left(\frac{5}{13}\right)=(-1)^{3}=-1$.
3. Suppose a is a quadratic residue of an odd prime p. Show that $-a$ is a quadratic residue of p if and only if $p \equiv 1 \bmod 4$.
Solution: We have

$$
\left(\frac{-a}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{-1}{p}\right)=\left(\frac{-1}{p}\right)
$$

and we know that $\left(\frac{-1}{p}\right)=1$ if and only if $p \equiv 1 \bmod 4$. Thus $\left(\frac{-a}{p}\right)=1$ if and only if $p \equiv 1 \bmod 4$, and thus $-a$ is a quadratic residue if and only if $p \equiv 1 \bmod 4$.
4. Evaluate ($\frac{3}{7}$) and $\left(\frac{5}{11}\right)$ using Eisenstein's lemma.

Solution: We compute

$$
\begin{aligned}
T(3,7) & =\lfloor 3 / 7\rfloor+\lfloor 6 / 7\rfloor+\lfloor 9 / 7\rfloor=0+0+1=1 \\
\left(\frac{3}{7}\right) & =(-1)^{T(3,7)}=(-1)^{1}=-1 \\
T(5,11) & =\lfloor 5 / 11\rfloor+\lfloor 10 / 11\rfloor+\lfloor 15 / 11\rfloor+\lfloor 20 / 11\rfloor+\lfloor 25 / 11\rfloor=0+0+1+1+2=4 \\
\left(\frac{5}{11}\right) & =(-1)^{T(5,11)}=(-1)^{4}=1
\end{aligned}
$$

5. Calculate:
(a) $\left(\frac{3}{53}\right)$
(b) $\left(\frac{15}{101}\right)$
(c) $\left(\frac{31}{641}\right)$
(d) $\left(\frac{1009}{2307}\right)$ (This problem is poorly posed because the bottom is composite, sorry).
(e) $\left(\frac{2663}{3299}\right)$

Solution:

(a) $\left(\frac{3}{53}\right)\left(\frac{53}{3}\right)=1$ so $\left(\frac{3}{53}\right)=\left(\frac{2}{3}\right)=-1$.
(b) $\left(\frac{15}{101}\right)=\left(\frac{3}{101}\right)\left(\frac{5}{101}\right)$.
$\left(\frac{3}{101}\right)\left(\frac{101}{3}\right)=(-1)^{2 / 2 \cdot 100 / 2}=1$ so $\left(\frac{3}{101}\right)=\left(\frac{101}{3}\right)=\left(\frac{2}{3}\right)=-1$.
$\left(\frac{5}{101}\right)\left(\frac{101}{5}\right)=(-1)^{4 / 2 \cdot 100 / 2}=1$ so $\left(\frac{5}{101}\right)=\left(\frac{101}{5}\right)=\left(\frac{1}{5}\right)=1$.
Thus $\left(\frac{15}{101}\right)=(-1)(1)=-1$.
(c) $\left(\frac{31}{641}\right)\left(\frac{641}{31}\right)=1$ so $\left(\frac{31}{641}\right)=\left(\frac{21}{31}\right)$.
$\left(\frac{21}{31}\right)=\left(\frac{3}{31}\right)\left(\frac{7}{31}\right)$.
$\left(\frac{3}{31}\right)\left(\frac{31}{3}\right)=(-1)^{2 / 2 \cdot 30 / 2}=(-1)$ so $\left(\frac{3}{31}\right)=-\left(\frac{31}{3}\right)=-\left(\frac{1}{3}\right)=-1$.
$\left(\frac{7}{31}\right)\left(\frac{31}{7}\right)=(-1)^{6 / 2 \cdot 30 / 2}=(-1)$ so $\left(\frac{7}{31}\right)=-\left(\frac{31}{7}\right)=-\left(\frac{3}{7}\right)$.
$\left(\frac{3}{7}\right)\left(\frac{7}{3}\right)=(-1)^{2 / 2 \cdot 6 / 2}=-1$ so $\left(\frac{3}{7}\right)=-\left(\frac{7}{3}\right)=-\left(\frac{1}{3}\right)=-1$.
Thus $\left(\frac{31}{641}\right)=(-1)(1)=-1$.
(d)
(e) $\left(\frac{2663}{3299}\right)\left(\frac{3299}{2663}\right)=-1$ so $\left(\frac{2663}{3299}\right)=-\left(\frac{3299}{2663}\right)=-\left(\frac{636}{2633}\right)=-\left(\frac{2^{2}}{2663}\right)\left(\frac{3}{2663}\right)\left(\frac{53}{2663}\right)=$ $-\left(\frac{3}{2663}\right)\left(\frac{53}{2663}\right)$.
$\left(\frac{3}{2663}\right)\left(\frac{2663}{3}\right)=-1$ so $\left(\frac{3}{2663}\right)=-\left(\frac{2663}{3}\right)=-\left(\frac{2}{3}\right)=-(-1)=1$.
$\left(\frac{53}{2663}\right)\left(\frac{2663}{53}\right)=1$ so $\left(\frac{53}{2663}\right)=\left(\frac{2663}{53}\right)=\left(\frac{13}{53}\right)$.
$\left(\frac{13}{53}\right)\left(\frac{53}{13}\right)=1$ so $\left(\frac{13}{53}\right)=\left(\frac{53}{13}\right)=\left(\frac{1}{13}\right)=1$.
Thus $\left(\frac{53}{2663}\right)=1$, so $\left(\frac{2663}{3299}\right)=-\left(\frac{3}{2663}\right)\left(\frac{53}{2663}\right)=-(1)(1)=-1$.
6. Suppose p is an odd prime. Show that $\left(\frac{3}{p}\right)$ is 1 if $p \equiv \pm 1 \bmod 12$ and is -1 if $p \equiv \pm 5$ $\bmod 12$.
Solution: We have $\left(\frac{3}{p}\right)\left(\frac{p}{3}\right)=(-1)^{2 / 2 \cdot(p-1) / 2}$, which is 1 if $p \equiv 1 \bmod 4$ and is -1 if $p \equiv-1 \bmod 4$. Then we see that $\left(\frac{p}{3}\right)=1$ if $p \equiv 1 \bmod 3$ and is -1 if $p \equiv 2$ mod 3. Using the Chinese Remainder Theorem to combine these facts, we get the desired conclusion.
7. Using the law of Quadratic Reciprocity, prove the following theorem:

Theorem 1. Suppose p is an odd prime, $p \nmid a$, and q is a prime with $p \equiv \pm q \bmod 4 a$. Then $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)$.

This is in fact equivalent to the law of Quadratic Reciprocity, and is the form in which Euler originally proved it.
Solution: First assume a is odd. Then, using quadratic reciprocity, we have

$$
\begin{aligned}
& \left(\frac{a}{p}\right)\left(\frac{p}{a}\right)=(-1)^{(p-1) / 2(a-1) / 2} \\
& \left(\frac{a}{q}\right)\left(\frac{q}{a}\right)=(-1)^{(q-1) / 2(a-1) / 2}
\end{aligned}
$$

Since $q \equiv p$ mod a we know that $\left(\frac{p}{a}\right)=\left(\frac{q}{a}\right)$, and since $p \equiv q \bmod 4$ we know that $(p-1) / 2 \equiv(q-1) / 2 \bmod 2$ and thus $(-1)^{(p-1) / 2(a-1) / 2}=(-1)^{(q-1) / 2(a-1) / 2}$. Thus $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)$.
Now suppose $a=2^{k} b$ where b is odd. We have

$$
\begin{aligned}
& \left(\frac{a}{p}\right)=\left(\frac{2^{k}}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{2^{k}}{p}\right)\left(\frac{b}{q}\right) \\
& \left(\frac{2}{p}\right)(-1)^{\left(p^{2}-1\right) / 8}=(-1)^{\left(q^{2}-1\right) / 8}
\end{aligned}
$$

since $p \equiv q \bmod 4 a$ and thus $p \equiv q \bmod 8$. Thus $\left(\frac{a}{p}\right)=\left(\frac{2^{k}}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{2^{k}}{q}\right)\left(\frac{b}{q}\right)=$ $\left(\frac{a}{q}\right)$.
8. Find a congruence describing all odd primes for which 5 is a quadratic residue.

Solution: Let p be an odd prime. Then $\left(\frac{5}{p}\right)\left(\frac{p}{5}\right)=(-1)^{2 \cdot(p-1) / 2}=1$ and thus $\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)$. We can compute that p is a quadratic residue modulo 5 if $p \equiv 1 \bmod 5$
or $p \equiv 4 \bmod 5$, that is, if $p \equiv \pm 1 \bmod 5$. Thus 5 is a quadratic residue modulo p if and only if $p \equiv \pm 1 \bmod 5$.
9. Let $p=1+8 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23=892,371,481$. This number is prime (don't bother trying to prove this yourself). Prove that if q is a prime and $q \leq 23$, then q is a quadratic residue modulo p.
Conclude that there is no quadratic nonresidue of p less than 29 , and thus no primitive root less than 29 .
Solution: Suppose $q \leq 23$ is an odd prime. Then we have

$$
\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)=(-1)^{(p-1) / 2(q-1) / 2}=1
$$

since $8 \mid p-1$. Thus

$$
\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)=\left(\frac{1}{q}\right)=1
$$

since $p \equiv 1 \bmod q$. Thus q is a quadratic residue modulo p.
Now we need to check 2 separately. We have see that $\left(\frac{2}{p}\right)=1$ since $p \equiv 1 \bmod 8$.
Now suppose $1 \leq n \leq 28$. Then n is a product of primes ≤ 23, and since each of these primes is a quadratic residue modulo p, their product is also a quadratic residue modulo p (e.g. since the Legendre symbol is multiplicative). Thus n is a quadratic residue modulo p.

Now suppose we have a primitive root r. We know that r must be a quadratic nonresidue modulo p, since $r^{(p-1) / 2} \not \equiv 1 \bmod p$ by definition of primitive root. Thus $r \not \leq 29$ by the previous argument.

