Math 322 Fall 2017 Number Theory HW 7 Due Friday, October 27

You may *not* discuss the starred problem with classmates, though you should of course feel free to discuss it with me as much as you like. Linguistic precision is important for this problem.

(*) Starred Problem: Show that if n is odd, then $\phi(4n) = 2\phi(n)$.

For the remainder of these problems, I encourage you to collaborate with your classmates, as well as to discuss them with me.

- 1. Show that 1387 is a pseudoprime but not a strong pseudoprime to the base 2.
- 2. Let m be a natural number. Find a reduced residue system modulo 2^m .
- 3. Use Euler's theorem to find the last decimal digit of:
 - (a) 3^{1000}
 - (b) 7^{999,999}
 - (c) Let n be a natural number. Prove that $\phi(n) = n 1$ if and only if n is prime.
- 4. Let a, b be relatively prime natural numbers. Show that $a^{\phi(b)} + b^{\phi(a)} \equiv 1 \mod ab$.
- 5. Let $c_1, c_2, \ldots, c_{\phi(m)}$ be a reduced residue system modulo m, where m > 2. Show that $c_1 + c_2 + \cdots + c_{\phi(m)} \equiv 0 \mod m$.
- 6. Determine whether each of the following functions is multiplicative, completely multiplicative, or neither.
 - (a) f(n) = 0
 - (b) gcd(n,k) for some fixed integer k.
 - (c) $\log(n)$
- 7. Find all numbers n with $\phi(n) = 16$, and prove that you have found them all.