Week 8: Elliptic Curve Cryptography

Jay Daigle

Occidental College

October 19, 2017

Jay Daigle (Occidental College)

Elliptic Curves Cryptography

October 19, 2017 1 / 7

3

-∢ ≣ →

A 10

・ロト ・日・・日・・日・ ・日・

\mathbb{F}_{13}

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

 $E: y^2 = x^3 + 3x + 8$ over \mathbb{F}_{13}

Jay Daigle (Occidental College)

Elliptic Curves Cryptography

October 19, 2017 2 / 7

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

$$1^2 \equiv 1$$
 $2^2 \equiv 4$ $3^3 \equiv 9$ $4^3 \equiv 3$ $5^2 \equiv 12$ $6^2 \equiv 10$
 $7^2 \equiv 10$ $8^2 \equiv 12$ $9^2 \equiv 3$ $10^2 \equiv 9$ $11^2 \equiv 4$ $12^2 \equiv 1$

$$E: y^2 = x^3 + 3x + 8$$
 over \mathbb{F}_{13}

 $E(\mathbb{F}_{13}) = \{\mathcal{O}, (1,5), (1,8), (2,3), (2,10), (9,6), (9,7), (12,2), (12,11)\}.$

・ロン ・四と ・ヨン ・ヨン

Elliptic Curves Cryptography

October 19, 2017 3 / 7

 $E: y^2 = x^3 + 3x + 8$ over \mathbb{F}_{13}

-∢ ≣ →

< □ > < 同 > < 三 >

The line y = 5x over \mathbb{F}_{13}

< 同 ▶

э

Elliptic Curves Cryptography

October 19, 2017 5 / 7

$$y^2 = x^3 + 3x + 8$$
 and $y = 5x$

October 19, 2017 5 / 7

æ

<ロ> <同> <同> < 同> < 同>

Elliptic Curves Cryptography

October 19, 2017 6 / 7

Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{Q} , and let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be points on $E(\mathbb{Q})$. Then:

Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{Q} , and let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be points on $E(\mathbb{Q})$. Then:

• If $y_1 \equiv -y_2 \mod p$ then $P \oplus Q = \mathcal{O}$.

Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{Q} , and let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be points on $E(\mathbb{Q})$. Then:

- If $y_1 \equiv -y_2 \mod p$ then $P \oplus Q = \mathcal{O}$.
- 2 If $P_1 = P_2$, then define $\lambda = \frac{3x_1^2 + A}{2y_1}$. Set

$$x_3 = \lambda^2 - x_1 - x_2$$
 $y_3 = \lambda(x_1 - x_3) - y_1.$

Then $P \oplus Q = (x_3, y_3)$.

Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{Q} , and let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be points on $E(\mathbb{Q})$. Then:

- 1 If $y_1 \equiv -y_2 \mod p$ then $P \oplus Q = \mathcal{O}$.
- 2 If $P_1 = P_2$, then define $\lambda = \frac{3x_1^2 + A}{2y_1}$. Set

$$x_3 = \lambda^2 - x_1 - x_2$$
 $y_3 = \lambda(x_1 - x_3) - y_1.$

Then $P \oplus Q = (x_3, y_3)$. If $P_1 \neq P_2$, then define $\lambda = \frac{y_2 - y_1}{x_2 - x_1}$. Then as before, set

$$x_3 = \lambda^2 - x_1 - x_2$$
 $y_3 = \lambda(x_1 - x_3) - y_1.$

Then $P \oplus Q = (x_3, y_3)$.

Elliptic Curves Cryptography

October 19, 2017 7 / 7

æ

<ロ> <同> <同> < 同> < 同>