Math 400 Fall 2017 Cryptology HW 5 Due Thursday, October 5

- 1. Is 2 a primitive root mod 31? Prove or disprove your answer.
- 2. Is 17 a primitive root mod 31? Prove or disprove your answer.
- 3. Compute $\log_2(13) \mod 23$ and $\log 10(22) \mod 47$.
- 4. Suppose you are doing a Diffie-Hellman key exchange with Alice. You have agreed to use p = 1373, g = 2.
 - (a) You choose the secret value b = 871. What number should you send to Alice?
 - (b) Alice sends you A = 974. What is the secret shared key?

(I recommend using Wolfram Alpha or Mathematica or something similar for this one, to avoid long and tedious hand arithmetic).

- 5. From the definition of big-O notation, prove that $x^2 + \sqrt{x} = O(x^2)$.
- 6. Prove (using the definition or the limit property) that:

(a)
$$k^{300} = O(2^k)$$

(b) $(\log_2(k))^{100} = O(k).$

- 7. Use the efficient modular exponentiation algorithm (showing your steps) to compute $3^{51} \mod 71$.
- 8. Use Shanks's algorithm (showing your steps) to solve $11^x \equiv 21 \mod 71$.