Math 400 Fall 2017
 Cryptology HW 5 Due Thursday, October 5

1. Is 2 a primitive root mod 31? Prove or disprove your answer.
2. Is 17 a primitive root mod 31 ? Prove or disprove your answer.
3. Compute $\log _{2}(13) \bmod 23$ and $\log 10(22) \bmod 47$.
4. Suppose you are doing a Diffie-Hellman key exchange with Alice. You have agreed to use $p=1373, g=2$.
(a) You choose the secret value $b=871$. What number should you send to Alice?
(b) Alice sends you $A=974$. What is the secret shared key?
(I recommend using Wolfram Alpha or Mathematica or something similar for this one, to avoid long and tedious hand arithmetic).
5. From the definition of big-O notation, prove that $x^{2}+\sqrt{x}=O\left(x^{2}\right)$.
6. Prove (using the definition or the limit property) that:
(a) $k^{300}=O\left(2^{k}\right)$
(b) $\left(\log _{2}(k)\right)^{100}=O(k)$.
7. Use the efficient modular exponentiation algorithm (showing your steps) to compute $3^{51} \bmod 71$.
8. Use Shanks's algorithm (showing your steps) to solve $11^{x} \equiv 21 \bmod 71$.
