
Jay Daigle Occidental College Math 400: Cryptology

9 Knapsack Cryptography

In the past four weeks, we’ve discussed public-key encryption systems that depend on various

problems that we believe to be hard: prime factorization, the discrete logarithm, and the

elliptic curve discrete logarithm. These algorithms currently work fine in practice, but they

have three potential security problems:

1. We don’t know for sure that it’s possible to have a secure public-key type algorithm;

anything that can efficiently solve NP-complete problems can efficiently break public-

key cryptography.

2. We don’t actually know that the discrete logarithm class of problems is NP-complete;

it is suspected that it is not. Thus it’s possible that these problems can be efficiently

solved even if P 6= NP .

3. There is a known quantum algorithm that can efficiently break all of these cryptosys-

tems. Because building a functioning quantum computer is a challenging engineering

task, the largest number that has been factored with Shor’s algorithm so far is 21.

Thus quantum computers are not currently a threat.

But there is a substantial risk of them becoming a threat in the medium future, so many

security-concerned groups have started planning for “post-quantum” cryptography that

can stand up to quantum computer based attacks.

We can’t really do anything about the first problem; if P = NP then public-key cryp-

tography is impossible in principle. But the other two problems are potentially solvable, by

basing our cryptographic algorithm on a problem that is “known” to be hard—a problem

that is NP -complete.

9.1 The Subset-Sum Problem

A classic NP-complete problem is the knapsack problem, which asks you to maximize the

value of items you can fit into a knapsack subject to some weight restrictions.

Definition 9.1 (Knapsack problem). Given a (finite) set of items xi, each with weight wi

and value vi, maximize
∑n

i=1 xivi subject to
∑n

i=1 xiwi ≤ W,xi ∈ {0, 1}.

A special case of this is the subset sum problem

http://jaydaigle.net/teaching/courses/2017-fall-400/ 82

http://jaydaigle.net/teaching/courses/2017-fall-400/

Jay Daigle Occidental College Math 400: Cryptology

Definition 9.2 (Subset Sum problem). Given a list of positive integers M = (M1, . . . ,Mn),

and another integer S, find a subset of the integers in the list whose sum is S.

(This corresponds to the knapsack problem with each vi = wi = Mi).

This problem is known to be NP-complete in general: it is easy to check that a possible

solution is an actual solution (by adding the numbers and checking that they sum to S), but

difficult to find such a subset if you don’t already know one.

Example 9.3. Solve the subset-sum problem for the list (1, 3, 5, 6, 8, 10, 11) and the sum

S = 24.

A little trial and error gives that we have S = 3 + 10 + 11. Alternatively S = 6 + 8 + 10.

There’s no guarantee that any given solution is unique.

How do we solve the subset-sum problem? We can obviously brute-force the solution

by trying all 2n possible combinations. A collision algorithm like the Giant Step/Baby Step

algorithm can reduce the number of calculations necessary by a square root, so we can solve

the problem in O(2n/2+ε) steps. This is still quite slow.

We’d like to use the one-way difficulty of solving this problem to power a cryptosystem.

The basic idea is that Alice starts with a list of positive integers M = (M1, . . . ,Mn). She

writes her message as an n-bit binary number with digits x1x2 . . . xn, and then sends Bob

the number C =
∑n

i=1 xiMi. If Bob can solve the subset-sum problem, he can recover the

list of integers Mi and thus the original message M = x1x2 . . . xn.

If Eve intercepts this message, she will have a difficult time decrypting it, because solving

the subset sum problem is difficult. But without any extra tools, Alice can’t decrypt it any

more easily than Eve can! So we need some sort of “trap door” that allows Alice to solve

the subset-sum problem easily. So our goal is to set up a specific subset-sum problem that

is easy to solve, and then somehow disguise it so no one else can solve it easily.

Definition 9.4. A list of positive integers r = (r1, . . . , rn) is a superincreasing sequence if

ri+1 ≥ 2ri for all i.

Lemma 9.5. If r = (r1, . . . , rn) is a superincreasing sequence, then rk > rk−1 + · · ·+ r2 + r1

for all 2 ≤ k ≤ n.

Proof. We prove this with a straightforward induction. For k = 2 we have r2 ≥ 2r1 > r1.

Suppose that rk > rk−1 + · · ·+ r1. Then we have

rk+1 ≥ 2rk = rk + rk > rk + (rk−1 + · · ·+ r1)

http://jaydaigle.net/teaching/courses/2017-fall-400/ 83

http://jaydaigle.net/teaching/courses/2017-fall-400/

Jay Daigle Occidental College Math 400: Cryptology

as desired.

The subset-sum problem is very easy to solve for a superincreasing sequence.

Proposition 9.6. Let (M, S) give a subset-sum problem, where the integers in M = (M1, . . . ,Mn)

form a superincreasing sequence. If a solution x exists, we may find it with the following

algorithm:

1. Start with the largest element Mn.

2. If S ≥Mi, set xi = 1 and subtract Mi from S. Otherwise, set xi = 0.

3. Proceed to the next smallest number.

At the end of this process, x = x1 . . . xn is a solution to the subset sum problem.

Proof. Suppose we have a solution y, such that y ·M = S. We want to show that the

number x produced by the algorithm is equal to y. We prove this by downward induction.

Suppose that xi = yi for all k < i ≤ n; we wish to prove that xk = yk. We have

Sk = S −
n∑

i=k+1

xiMi =
n∑
i=1

yiMi −
n∑

i=k+1

xiMi =
n∑
i=1

yiMi −
n∑

i=k+1

yiMi =
k∑
i=1

kyiMi

When we execute the loop for i = k, there are two possibilities.

1. If yk = 1, then Sk ≥Mk, so we set xk = 1. So xk = yk.

2. If yk = 0, then Sk ≤ Mk−1 + · · · + M1 < Mk by lemma 9.5, and thus we set xk = 0 in

our algorithm, and so yk = xk.

Thus in either case, xk = yk, and thus by induction xi = yi for all i.

Thus if a solution exists, our algorithm finds it. This proves that our algorithm works,

and also that the solution is unique.

Example 9.7. The set M = (3, 11, 24, 50, 115) is superincreasing. Solve the subset-sum

problem for (M, 142).

We see that S ≥ 115, so we have x5 = 1 and S5 = 142 − 115 = 27. Then S5 < 50 so

x4 = 0 and S4 = 27. S2 > 24 so x3 = 1 and S3 = 27 − 24 = 3. Then S3 < 11 so we have

x2 = 0 and S2 = 3. Finally we have S2 ≥ 3 so x1 = 1 and S1 = 0, which it necessarily will.

http://jaydaigle.net/teaching/courses/2017-fall-400/ 84

http://jaydaigle.net/teaching/courses/2017-fall-400/

Jay Daigle Occidental College Math 400: Cryptology

Thus our algorithm claims that

142 = 1 · 3 + 0 · 1 + 1 · 24 + 0 · 50 + 1 · 115

which is in fact true.

9.2 Knapsack Cryptography

Merkle and Hellman proposed a public key system based on a super-increasing subset-sum

problem. In order to make it difficult for Eve to decipher, the superincreasingness is disguised

using congruences. Since Alice knows how to use the superincreasingness, she can solve the

problem easily; since Eve does not, she cannot.

Algorithm 9.1 (Merkle-Hellman Subset-Sum Cryptography). To create the public-

private keypair:

1. Alice chooses a superincreasing sequence of positive integers r = (r1, . . . , rn).

2. Alice chooses two large integers A,B with B > 2rn and gcd(A,B) = 1. Alice also

computes the inverse of A modulo B.

3. For each i, Alice sets Mi ≡ Ari mod B with 0 ≤ Mi < B. The sequence M =

(M1, . . . ,Mn) is Alice’s public key, which she publishes.

When Bob wants to encrypt a message:

1. Bob writes his plaintext x as a binary vector.

2. Bob computes S = x ·M =
∑n

i=1 xiMi and sends this to Alice.

To decrypt:

1. Alice computes S ′ ≡ A−1S mod B for 0 ≤ S ′ < B.

2. Alice solves the subset problem for (r, S ′). Since r is superincreasing, this is easy.

The decryption works becasue we have

S ′ ≡ A−1S ≡ A−1
n∑
i=1

xiMi

≡ A−1
n∑
i=1

xiAri ≡
n∑
i=1

xiri mod B.

Since B > 2rn we know that B >
∑n

i=1 xiri, so we know that S ′ is in fact an exact sum of

the ri and Alice can solve her problem easily.

http://jaydaigle.net/teaching/courses/2017-fall-400/ 85

http://jaydaigle.net/teaching/courses/2017-fall-400/

Jay Daigle Occidental College Math 400: Cryptology

Example 9.8. Suppose Alice chooses r = (3, 11, 24, 50, 115) and she chooses A = 113, B =

250. Then she computes

M = (113 · 3, 113 · 11, 113 · 24, 113 · 50, 113 · 115) mod 250

= (89, 243, 212, 150, 245).

She also computes that A−1 ≡ 177 mod 250.

Bob wants to send Alice the message x = (1, 0, 1, 0, 1) (which corresponds to the number

21 in binary). He encrypts x by computing

S = x ·M = 1 · 89 + 0 · 243 + 1 · 212 + 0 · 150 + 1 · 245 = 546

and sending this to Alice.

When Alice receives S, she computes 177 · 546 ≡ 142 mod 250. She can then solve the

subset-sum problem (as we did in example 9.7) to recover Bob’s message.

9.2.1 Parameter sizes and security

If our subset has n elements, then there are 2n possible binary vectors, so a brute force

attempt would invole 2n calculations. Because there is a collision algorithm, we can do

things in 2n/2 calcuations, so achieving 80 bits of security reuqires taking n > 160.

It turns out we also need to choose r1 > 2n, which implies that rn > 22n and thus B > 22n

Thus the public key is a list of n integers, each of which is approximately 2n bits long; the

plaintext contains n bits of information, and the ciphertext is a number of approximately

2n bits. This gives us again a 2-1 message expansion factor.

Notice that the public keys are really long! To get an effective 80 bits of security, elliptic

curve cryptography required a 160-bit key; RSA required approximately a 1024-bit key. Our

knapsack cryptosystem here requires a public key of size 2n2 = 51200 bits.

This seems like a problem, but it’s compensated for by the fact that knapsack cryp-

tosystems are extremely fast. Notice that our cryptosystem involved no multiplication to

encrypt, and only one multiplication to decrypt; this is far more efficient than the repeated

exponentiations involved in RSA, Diffie-Hellman, and ECC.

So why aren’t knapsack cryptosystems the new standard? We observed that the subset-

sum problem is NP-complete, and in fact the best known algorithms to solve an arbitrary

subset-sum problem are versions of the collision algorithm, which run in O(2n/2).

But just as using a superincreasing set makes it easy for Alice to decrypt this message,

it also adds structure to the message that allows Eve to decrypt it—even without knowing

http://jaydaigle.net/teaching/courses/2017-fall-400/ 86

http://jaydaigle.net/teaching/courses/2017-fall-400/

Jay Daigle Occidental College Math 400: Cryptology

the original sequence. To do this, Eve reformulates the subset-sum problem as a question

about lattices.

9.3 Lattices

Definition 9.9. Let v1, . . . ,vn ∈ Rm be a set of linearly independent vectors. Then the

lattice L generated by {v1, . . . ,vn} is the set of integeger linear combinations of the vi with

coefficients in Z:

L = {a1v1 + · · ·+ anvn : ai ∈ Z}.

A lattice is an attempt to take linear algebra, but use the integers as scalars. This changes

a number of things because we can’t divide by a scalar. There’s a lot of theory of lattices

we could cover; there’s no way to fit it all into one lecture. We’ll just be going over some

highlights here.

Definition 9.10. An integral lattice is a lattice all of whose vectors have integral coordinates.

We can view such a lattice as a subgroup of Zm.

Example 9.11. Consider L ⊂ R3 generated by v1 = (2, 1, 3),v2 = (1, 2, 0),v3 = (2,−3,−5).

We can define new vectors w1 = v1 + v3,w2 = v1 − v2 + 2v3,w3 = v1 + 2v2. This gives

the change of basis matrix

U =


1 0 1

1 −1 2

1 2 0

 .
We can compute that this matrix has determinant −1, so the vectors w1,w2,w3 are also a

basis for L. The inverse of U is

U−1 =


4 −2 −1

−2 1 1

−3 2 1


which tells us we have v1 = 4w1− 2w2−w3,v2 = −2w1 + w2 + w3,v3 = −3w1 + 2w2 + w3.

Finally, we can ask how to represent the wi in “true” coordinates. We can write down

the matrix A whose rows are the vi: 
2 1 3

1 2 0

2 −3 −5

 .
http://jaydaigle.net/teaching/courses/2017-fall-400/ 87

http://jaydaigle.net/teaching/courses/2017-fall-400/

Jay Daigle Occidental College Math 400: Cryptology

Then the matrix

B = UA =


4 −2 −2

5 −7 −7

4 5 3


is the matrix formed by the wi, so we have w1 = (4,−2, 2),w2 = (5,−7,−7),w3 = (4, 5, 3).

Fact 9.12. Any two bases for a lattice L are related by a matrix having integer coefficients

whose inverse also has integer coefficients. Thus the matrix must have determinant ±1.

We say such a matrix is an element of the general linear group over the integers GLn(Z).

Definition 9.13. Let L be a lattice of dimension n with basis B = {v1, . . . ,vn}. Then the

fundamental dommain for L corresponding to B is the set

F(B) = {t1v1 + t2v2 + · · ·+ tnvn : 0 ≤ ti < 1}.

Fact 9.14. Let L ⊂ Rn with basis B and let F be the fundamental domain for L corresponding

to B. Then every vector w ∈ Rn can be written uniquely as w = t + v for some t ∈ F and

v ∈ L.

Definition 9.15. Let L be a lattice of dimension n and let F be a fundamental domain for

L. Then the n-dimensional volume of F is called the determinant of L or det(L).

Fact 9.16. Let L be a lattice, B = {v1, . . . ,vn} a basis, and F a fundamental domain. Then

detL ≤ ‖v1‖ · · · · · ‖vn‖.

Further if we let A be the matrix whose rows are given by the vi, then detL = | detA|.

9.4 The Shortest Vector Problem

A standard question is to find the shortest vector contained in a lattice. In a vector space

this question makes no sense, since we can always divide a vector by some scalar and get a

shorter vector; in a lattice this is not possible.

Definition 9.17 (Shortest-Vector Problem). Given a lattice L with a basis {v1, . . . ,vn},
find a shortest non-zero vector v ∈ L.

Many lattices have more than one shortest vector (e.g. the lattice Z2 contains (±1, 0)

and (0,±1) which are all equal lengths; thus each is “a” shortest vector).

http://jaydaigle.net/teaching/courses/2017-fall-400/ 88

http://jaydaigle.net/teaching/courses/2017-fall-400/

Jay Daigle Occidental College Math 400: Cryptology

The shortest-vector problem is a classic NP -complete problem, so there is no efficient

algorithm to solve it in general. (In fact even the best known algorithms are quite bad; there

are exponential-time algorithms, but these also require exponential amounts of memory).

We can also pose the related closest-vector problem:

Definition 9.18 (Closest-Vector Problem). Given a lattice L and a vector w ∈ Rm that is

not in L, find a vector v ∈ L that is closest to w. That is, find a vector v ∈ L that minimizes

‖w − v‖.

These problems are both quite difficult to solve exactly; they are somewhat easier to

solve approximately, but only somewhat. We can, however, lay out some guidelines for what

a solution will look like.

Fact 9.19 (Hermite’s Theorem). Every lattice L of dimension n contains a nonzero vector

v ∈ L satisfying ‖v‖ ≤
√
n det(L)1/n.

Fact 9.20 (Gaussian Heuristic). Let L be a lattice of dimension n. The Gaussian expected

shortest length is

σ(L) =

√
n

2πe
(detL)1/n.

The Gaussian heuristic says that a shortest nonzero vector in a “random” lattice will satisfy

‖v‖ ≈ σ(L).

This heuristic is just an average. The shorter the actual shortest vector is compared to

the expected shortest vector, the easier it is to solve the shortest-vector problem.

9.5 Cracking the knapsack with lattices

We want to reformulate Eve’s problem in cracking the knapsack cryptosystem 9.1 as a

question about lattices. Suppose she wants to write S as a subset-sum from the set M =

(m1, . . . ,mn). She can write a matrix

2 0 0 . . . 0 m1

0 2 0 . . . 0 m2

0 0 2 . . . 0 m3

...
...

...
. . .

...
...

0 0 0 . . . 2 mn

1 1 1 . . . 1 S


http://jaydaigle.net/teaching/courses/2017-fall-400/ 89

http://jaydaigle.net/teaching/courses/2017-fall-400/

Jay Daigle Occidental College Math 400: Cryptology

We think of each row of this matrix as forming the vector vi, so that we have

v1 = (2, 0, 0, . . . , 0,m1)

v2 = (0, 2, 0, . . . , 0,m2)

...
...

vn = (0, 0, 0, . . . , 2,mn)

vn+1 = (1, 1, 1, . . . , 1, S).

Eve will consider the lattice L generated by the vi:

L = {a1v1 + · · ·+ anvn + an+1vn+1 : ai ∈ Z}.

Suppose x = (x1, . . . , xn) is a solution to the subset problem. Then L contains the vector

t =
n∑
i=1

xivi − vn+1 = (2x1 − 1, 2x2 − 1, . . . , 2xn − 1, 0)

where the last coordinate is 0 since S = x1m1 + · · ·+ xnmn.

Now since xi ∈ {0, 1}, we know that 2xi − 1 = ±1, and thus ‖t‖ =
√
n. But since

mi = O(22n) and S = O(22n), we see that ‖vi‖ = O(22n)�
√
n.

Thus we see that t is an atypically short vector in L, so solving the subset-sum problem

is reducible to the problem of finding a short vector in this lattice.

In fact, we can compute the Gaussian heuristic. We know that S = O(22n), so S1/n+1 ≈ 4.

Thus we see that

σ(LM,S) =

√
n+ 1

2πe
(detLM,S)1/(n+1)

=

√
n+ 1

2πe
(2nS)1/(n+1)

≈
√
n+ 1

2πe
8 ≈ 1.936

√
n

so t is about half the length of the “expected” shortest vector. (We can improve this even

further by multiplying S and the Mi by some large constant C; this will inflate the expected

shortest vector by a factor of n+1
√
C but will leave t unchanged).

Now, we’re looking for the shortest vector in L, which we know is difficult—so we’ve

replaced one hard problem with another. However, clever algorithms can find an approximate

solution in polynomial time. The Lenstra-Lenstra-Lovász (LLL) algorithm can find a vector

http://jaydaigle.net/teaching/courses/2017-fall-400/ 90

http://jaydaigle.net/teaching/courses/2017-fall-400/

Jay Daigle Occidental College Math 400: Cryptology

with length at most 2(n−1)/2 times the length of the shortest vector. Since we expect t to be

much shorter than all the other vectors in the lattice, solving this approximate problem is

good enough, and thus we can break the cryptosystem.

http://jaydaigle.net/teaching/courses/2017-fall-400/ 91

http://jaydaigle.net/teaching/courses/2017-fall-400/

	Knapsack Cryptography
	The Subset-Sum Problem
	Knapsack Cryptography
	Parameter sizes and security

	Lattices
	The Shortest Vector Problem
	Cracking the knapsack with lattices

