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1 Limits

1.1 What is a limit?

Poll Question 1.1.1. Suppose |f(x)| ≤ 3 and |g(x)| ≤ x2. What can we say about |f(x)+g(x)|
and |f(x)− g(x)|?
|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ 3 + x2 (by the triangle inequality).

|f(x) − g(x)| ≥ |f(x)| − |g(x) ≥ |f(x)| − x2 (by the reverse triangle inequality). We

can’t say anything more about the |f(x)| bit because knowing that |f(x)| is smaller than

something doesn’t tell us anything about what it’s bigger than.

Poll Question 1.1.2. What value “should” the function given in the following graph have at

x = 1?

Figure 1.1: The graph of x3−1
x−1

In this section we will study the idea of “limits”. Recall a function takes an input and

gives an output. The core idea of a limit is to look at the outputs for inputs “near” a given

input, in order to answer the question, essentially, of what an output “should be” when we

don’t have a good one..

most of you have seen an informal characterization of limits before

Definition 1.1 (informal). Suppose a is a real number, and f is a function which is defined

for all x “near” the number a. We say “The limit of f(x) as x approaches a is L,” and we

write

lim
x→a

f(x) = L,

if we can make f(x) get as close as we want to L by picking x that are very close to a.

Graphically, this means that if the x coordinate is near a then the y coordinate is near

L. Pictorially, if you draw a small enough circle around the point (a, 0) on the x-axis and
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look at the points of the graph above and below it, you can force all those points to be close

to L.

Remark 1.2. We specifically do not consider the value of f at a when talking about limits.

Limits were invented to deal with times when either a isn’t in the domain of f , or when

f(a) 6= limx→a f(x).

Example 1.3. 1. If f(x) = 3x then limx→1 f(x) = 3.

2. If f(x) = x2 then limx→0 f(x) = 0.

3. If f(x) = x2−1
x−1 then limx→1 f(x) = 2.

We’d like to take this definition and translate it into mathematical language, making it

more precise at the same time.

Definition 1.4. Suppose a is a real number, and f is a function defined on some open

interval containing a, except possibly for at a. We say the limit of f(x) as x approaches a is

L, and write

lim
x→a

f(x) = L,

if for every real number ε > 0 there is a real number δ > 0 such that whenever 0 < |x−a| < δ

then |f(x)− L| < ε.

Importantly, you should notice that this is exactly the same thing we said before! ε

represents “how close we want f(x) to get to L” and δ represents “how close x needs to get

to a”.

Then this definition says that if we pick any margin of error ε > 0, then there is some

distance δ such that if x is within distance δ of a, then f(x) is within our margin of error ε

of L.

Remark 1.5. The Greek letter epsilon (ε) became the letter “e”, and stands for “error”. The

Greek letter delta (δ) became the letter “d”, and stands for “distance”. This isn’t just a

mnemonic for you; this is actually why those letters were chosen.

Example 1.6. 1. If f(x) = 3x then prove limx→1 f(x) = 3.

Let ε > 0 and set δ = ε/3. Then if |x− 1| < δ then

|f(x)− 3| = |3x− 3| = 3|x− 1| < 3δ = ε.
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2. If f(x) = x2 then prove limx→0 f(x) = 0.

Let ε > 0 and set δ =
√
ε. Then if |x− 0| < δ, then

|f(x)− 0| = |x2| = |x|2 < (
√
ε)2 = ε.

3. If f(x) = x2−1
x−1 then limx→1 f(x) = 2.

This is harder to see at first, until we recall or notice that this function is mostly the

same as x+ 1.

Let ε > 0 and let δ = ε. Then if 0 < |x− 1| < δ, we have

|f(x)− 2| =
∣∣∣∣x2 − 1

x− 1
− 2

∣∣∣∣
= |x+ 1− 2| since x 6= 1

= |x− 1| < δ = ε.

Remark 1.7. Despite the fact that we set δ as the first thing we do in the proof, we often

figure out what it should be last. I strongly recommend beginning your proof by writing

“And set δ = ” and then working out the proof. By the time you get to the end you’ll

know what δ needs to be and you can go back and fill in th blank.

Poll Question 1.1.3. If f(x) = 4x− 2 then find (with proof!) limx→−2 f(x).

We first need to generate a “guess”. This is a nice function, so it seems like the answer

should be close to f(−2) = −10.

Let ε > 0 and set δ = ε/4. Then if |x− (−2)| < δ we compute

|f(x) + 10| = |4x− 2 + 10| = |4x+ 8| = 4|x+ 2| < 4δ = ε.

Example 1.8. If f(x) = x2 find (with proof!) limx→3 f(x).

We first need to generate a “guess”. This is a nice function, so it seems like the answer

should be close to f(3) = 9.

Let ε > 0 and set δ ≤ ε/7, 1. Then if |x− 3| < δ we compute

|x2 − 9| = |x+ 3| · |x− 3| < |x+ 3|δ

but this is kind of a problem because we still have an x floating around. But logically, we

know that if δ is small enough, x will be close to 3 and thus |x+ 3| will be close to 6.
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To guarantee that |x + 3| is actually close to 6, we’ll require δ ≤ 1 as well. Then we

compute

|x2 − 9| < |x+ 3|δ = |(x− 3) + 6| · δ

≤ (|x− 3|+ |6|) δ by the triangle inequality

< (1 + 6)δ = 7δ.

Notice we said that |x + 3| would be close to 6, and what we actually showed is that

|x+ 3| ≤ 7–which of course it is if it is close to 6.

So now we just need to make sure δ is small enough that 7δ ≤ ε, so in addition to letting

δ ≤ 1 we also let δ ≤ ε/7, so we have

|x2 − 9| < 7δ = 7ε/7 = ε.

Remark 1.9. • We often use an approach of isolating all our xs and turning them into an

x− 3 or x− a or whatever we know how to control. Since in example 1.8 we know that

|x− 3| < δ we want to turn all our xs into |x− 3|s. Then we can deal with whatever

is left over.

• Notice that here we didn’t actually say what δ is; we just listed some properties it

needs to have, by saying that δ ≤ ε/12, 1. If we want to pick out a specific number, we

can write δ = min(ε/12, 1), but this isn’t actually necessary.

Example 1.10. If f(x) = x2 + x, find (with proof) limx→2 f(x).

This is a nice function, so it seems like the answer should be close to f(2) = 6.

Let ε > 0 and set δ <
√
ε/2, ε/10. Then if |x− 2| < δ we have

|f(x)− 6| = |x2 + x− 6| = |(x2 − 4) + (x− 2)|

≤ |x2 − 4|+ |x− 2| (triangle inequality)

= |x− 2| · |x+ 2|+ |x− 2| = |x− 2| (|x+ 2|+ 1)

= |x− 2| (|x− 2 + 4|+ 1) ≤ |x− 2| (|x− 2|+ 5) (triangle inequality)

< δ(δ + 5) = δ2 + 5δ.

You could try to figure out exactly when δ2 + 5δ = ε, and after some quadratic formula-ing

you’d find you need δ ≤ −5+
√
25+4ε
2

. But that’s tedious and actually way too much work.

(But if you prefer this approach it’s perfectly acceptable).

It’s easier to instead list two conditions: we let δ ≤
√
ε/2, ε/10. Then δ2 ≤ ε/2 and

5δ ≤ ε/2, and we have

|f(x)− 6| < δ2 + 5δ ≤ ε/2 + ε/2 = ε.
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Example 1.11. If f(x) = 1/x, find (with proof) limx→4 f(x).

Since f(x) is a nice function, we guess f(4) = 1/4.

Let ε > 0 and set δ < 1, 12ε. Then we compute

|f(x)− 1/4| = |1/x− 1/4| =
∣∣∣∣4− x4x

∣∣∣∣ =
|x− 4|
|4x|

<
δ

|4x|

and we need to do something about the x on the bottom. In this case we need to ensure that

|4x| is big enough since we’re dividing by it. We see that |4x| = |4(x−4+4)| = |4(x−4)+16|;
how can we make this bigger than something?

Here we use the inverse triangle inequality, after a bit of rewriting. We compute

|4(x− 4) + 16| = |16− 4(4− x)| ≥ |16| − |4(4− x)| = 16− 4|x− 4|

|x− 4| < δ < 1

−4|x− 4| > −4

16− 4|x− 4| > 12.

Now we can compute

|1/x− 1/4| < δ

|4x|
<

12ε

12
= ε.

Example 1.12. If f(x) = x−1
x2−1 then find (with proof!) limx→1 f(x)?

We notice that if x 6= 1, then f(x) = 1
x+1

, and so we guess limx→1 f(x) = 1/2.

Let ε > 0 and let δ = ε, 1. Then if |x− 1| < δ we have

|f(x)− 1/2| =
∣∣∣∣ x− 1

x2 − 1
− 1/2

∣∣∣∣ =

∣∣∣∣ 1

x+ 1
− 1/2

∣∣∣∣ because x 6= −1

=

∣∣∣∣ 2

2x+ 2
− x+ 1

2x+ 2

∣∣∣∣ =

∣∣∣∣ 1− x
2x+ 2

∣∣∣∣
=

|x− 1|
|2(x− 1) + 4|

.

We want to make the top small, so require δ < ε. We want the bottom to be big, say we

want it to be at least two. We see that

|2(x− 1) + 4| = |4− 2(1− x)| ≥ 4− 2|1− x| > 4− 2δ

so if we require δ < 1 this gives us

|2(x− 1) + 4| > 2.
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Thus we have

|f(x)− 1/2| = |x− 1|
|2x+ 2|

<
δ

4− 2δ
< δ/2 < ε/2 < ε.

Example 1.13. Now suppose

f(x) =

{
x−1
x2−1 x 6= 1

2 x = 1

What is limx→1 f(x)?

This looks really nasty, but is actually easy after we already did Example 1.12.

The limit doesn’t care about what happens at any one specific point, and especially

doesn’t care about what happens at 1. So for our purposes, this function is the same as

f(x) = x−1
x2−1 , and thus the limit is, as before, 1/2.

Let ε > 0, and let δ < ε, 1. Then

|f(x)− 1/2| =
∣∣∣∣ x− 1

x2 − 1
− 1/2

∣∣∣∣ < ε

as computed in Example 1.12. (This is a completely valid proof as written!)

1.2 Limits that Don’t Exist

In the last section we proved that a bunch of limits exist. Now we’ll look at some functions

and limits that don’t behave so nicely.

Example 1.14. The Heaviside Function or step function is given by

H(t) =

{
0 t < 0

1 t ≥ 0

What is limx→0H(x)?

Looking at the graph it seems like no limit exists; when x is close to zero, sometimes

H(x) is 0 and sometimes H(x) is 1, and you can’t get “close enough” to make that stop.

We want to prove that no limit exists, so we have to look at our definition–and do the

exact opposite of what we do to prove a limit does exist. Normally we want to say that for

any expected error, we can get close enough to be within that error. So we say we can start

with any ε, and then find a good enough δ.

In this situation we want to say there is some error we cannot hit. So we start by picking

some ε, and then proving that no δ will work.
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(I like to think of this as a game. When I say a limit exists, I’m telling you you can pick

any ε, and I can find a δ. In contrast, here I’m saying that you have a winning move–there’s

some ε you can pick where I can’t find a δ).

Proof. Suppose the limit exists–that is there is some number L such that for ever ε > 0,

there is a δ > 0 such that if |x− 0| < δ then |H(x)− L| < ε.

Fix ε = 1/2. (We will see why I picked this specific value in a bit). Then let δ > 0 be

any (positive) real number.

Let x1 = δ/2. Then |x1 − 0| = δ/2 < δ. Thus by definition of limit,

ε > |H(x1)− L| = |1− L|.

Thus |1− L| < 1/2.

Now let x2 = −δ/2. Then |x2 − 0| = δ/2 < δ, and by definition of limit,

ε > |H(x2)− L| = |0− L| = |L|.

Thus |L| < 1/2.

So what does this mean? Since |1 − L| < 1/2 we know that L is within 1/2 of 1. Since

|L| < 1/2 we know that L is within 1/2 of 0. But there are no numbers that are within 1/2

of both 0 and 1, so L cannot exist!

We can translate this into more mathematical language in two different ways.

We can add our two inequalities, to get |1− L|+ |L| < 1/2 + 1/2. But if we look at the

left hand side of that, that looks like part of the triangle inequality. So we have

1 > |1− L|+ |L| ≥ |1− L+ L| = |1|

but this is false and thus we have a contradiction. So no such L can exist, and the limit does

not exist.

Alternatively, we can use the inverse triangle inequality, which tells us that 1/2 > |1−L| ≥
1− |L|. Adding our two inequalities together now gives 1− |L|+ |L| < 1/2 + 1/2 and thus

1 < 1, which is a contradiction. So no such L exists, and the limit does not exist.

(Notice that all three of these arguments are essentially the same!)

Example 1.15. What is limx→1H(x)?

There’s nothing funny going on here, it looks like the limit should be 1. And indeed

proving this in this case is quite easy.

Let ε > 0 and let δ = 1. Then if |x − 1| < δ then in particular we have |x − 1| < 1 and

thus x− 1 > −1 so x > 0 and H(x) = 1. Then we have|H(x)− 1| = 0 < ε.
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Example 1.16. Let

f(x) =

{
x x < 1

x+ 2 x > 1

What is limx→3 f(x)?

We guess 5. Let ε > 0 and set δ ≤ 2, ε. Then if 0 < |x − 3| < δ, then we see that in

particular |x− 3| < 2. This implies that x− 3 > −2 and thus x > 1, so f(x) = x+ 2. Then

|f(x)− 5| = |x+ 2− 5| = |x− 3| < δ ≤ ε.

Thus limx→3 f(x) = 5.

Example 1.17. Now show that limx→1 f(x) does not exist.

Suppose (for contradiction) that limx→1 f(x) = L. Then set ε = and let δ > 0. Pick

x1 = 1 + δ/2 and x2 = 1− δ/2.

Then |x1 − 1| = δ/2 < δ, so we know that

ε > |f(x1)− L| = |x1 + 2− L| = |3 + δ/2− L|.

Similarly, |x2 − 1| = δ/2 < δ so we know that

ε > |f(x2)− L| = |x2 − L| = |1− δ/2− L| = |L+ δ/2− 1|.

Adding these two equations gives

2ε > |L+ δ/2− 1|+ |3 + δ/2− L|

≥ |L+ δ/2− 1 + 3 + δ/2− L| = |2 + δ|

≥ 2 + |δ| > 2.

But since ε = 1 this gives us 2 > 2 which is a contradiction. Thus no such limit exists.

Example 1.18. What is limx→0 sin(1/x)?

If we look at a graph of the function, it’s hard to see what the limit could be–the function

jumps up and down crazily near 0, and it doesn’t look like you can get “close enough” to

avoid this.

Suppose there is some L with limx→0 f(x) = L. Let ε = 1 and fix some δ > 0. Write

f(x) = sin(1/x). I claim there is some positive integer n such that 0 < 2
nπ

< δ (pick a

number such that n > 2
πδ

. ) In fact, we can pick n so that sin(nπ/2) = 1.

Let x1 = 2
nπ

. Then |x1 − 0| < δ by construction, and

|f(x1)− L| = | sin(nπ/2)− L| = |1− L| < ε = 1.
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Let x2 = −2
nπ

. Then |x2 − 0| < δ, and

|f(x2)− L| = | sin(−nπ/2)− L| = | − 1− L| < ε = 1.

Informally: L must be within 1 of both the number 1 and the number −1; no number

satisfies these conditions, so the limit cannot exist.

Formally: there are two ways to see this. One is to notice that |1 + L| + |1 − L| looks

like it comes from the triangle inequality. So we have

1 + 1 > |1 + L|+ |1− L| ≥ |1 + L+ 1− L| = 2

which is a contradiction. Thus no such L exists.

The other way is to decide things will be easier if we can make all the Ls be in the same

form. We have a |1 − L| = |L − 1| and we can rewrite |1 + L| = |L + 2 − 1| ≤ |L − 1| + 2.

Now we can add our two inequalities together, and we get

2 = 1 + 1 > |1− L|+ |1 + L| ≥ |1− L|+ |1− L|+ 2 ≥ 2

which is impossible. Thus no such L exists.

A summary of the layout of these proofs: Assume a limit limx→a f(x) exists. Pick a value

for ε (you can leave this blank until later), and then let δ > 0 be some real number.

Now find two points that are both close to your limit point a, but give very different

outputs. Use the assumption that the limit exists to see that ε > |f(x1) − L| and ε >

|f(x2) − L| and add these together; use the triangle inequality to cancel the Ls, and get

2ε > f(x1)− f(x2).

Hopefully the right hand side is a constant (or bigger than a constant), and we can pick

ε to be small enough that this can’t work.

1.3 One-sided limits

We just proved that two different limits don’t exist; but one of them is much, much nicer

than the other. Looking at the graph, there are two plausible values you could give for

limx→0H(x); for limx→0 sin(1/x) there are infinitely many. We can capture this difference

with the idea of a one-sided limit :

Definition 1.19. Suppose a is a real number, and f is a function defined on some open

interval (a− h, a) We say the limit of f(x) as x approaches a from the left is L, and write

lim
x→a−

f(x) = L,
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if for every real number ε > 0 there is a real number δ > 0 such that whenever a− δ < x < a

then |f(x)− L| < ε.

Remark 1.20. This says that x has to be within δ of a, but also smaller than a–thus “on the

left.” This captures the idea that f(x) gets close to L when x is sufficiently close to a but

still smaller and to the left.

Thus this intuitively, this captures the idea that the outputs of a function get close to

one value on one side of a point, and perhaps get close to a different value (or are simply

ill-behaved) on the other side.

Notice the subscript a− in the limit sign. Recall that we use a − sign because we’re

looking at what happens for inputs less than a.

Remark 1.21. The a− δ < x < a might look unrelated to what we’ve done so far. But note

that |x− a| < δ is the same as −δ < x− a < δ, which is the same as a− δ < x < a+ δ. So

this is just the left half our earlier |x− a| < δ requirement.

Of course we can make a similar definition for a one-sided limit from the right.

Definition 1.22. Suppose a is a real number, and f is a function defined on some open

interval (a, a+ h) We say the limit of f(x) as x approaches a from the right is L, and write

lim
x→a+

f(x) = L,

if for every real number ε > 0 there is a real number δ > 0 such that whenever a < x < a+ δ

then |f(x)− L| < ε.

Remark 1.23. Notice that |x − a| < δ is the same as saying −δ < x − a < δ, which is the

same as a − δ < x < a + δ. This makes our two-sided limit definition look a lot more like

the one-sided definition.

Example 1.24. Let’s compute limx→0− H(x). It looks like this limit should be 0, since

H(x) = 0 whenever x < 0.

So let ε > 0 and δ = 1. Then if 0− 1 < x < 0, then |H(x)− 0| = |0− 0| = 0 < ε.

Notice that limx→0− H(x) 6= H(0). We say that H(x) is “not continuous at 0”, a concept

we will discuss more in section 4.

Example 1.25. Now let’s compute limx→0− H(x). It looks like this limit should be 1, since

H(x) = 1 whenever x > 0.

So let ε > 0 and δ = 1. Then if 0 < x < 0 + 1, then |H(x)− 1| = |1− 1| = 0 < ε.
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Example 1.26. Let

f(x) =

{
x2 + 3 x < −1

3x2 x ≥ −1

Find limx→−1+ f(x).

From the right this looks like 3x2 so we guess 3.

Let ε > 0 and set δ ≤ 1, ε/9. Then if −1 < x < −1 + δ, we compute

|f(x)− 3| = |3x2 − 3| since x > −1

= 3|x2 − 1| = 3|x− 1| · |x+ 1| < 3δ|x− 1|

= 3δ|x+ 1 + (−2)| ≤ 3δ(|x+ 1|+ |2|) ≤ 3δ(3) = 9ε/9 = ε.
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