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7 Implicit Functions

7.1 Implicit Derivatives

We defined a function as a rule, that takes some input and gives some output. Usually we

give you the rule explicitly, as when we say y = x2 − 1. But sometimes you only know

facts about the rule, such as y2 + x2 = 1 (which describes the unit circle). Sometimes these

facts will describe one function uniquely, and sometimes they won’t. (This comes up a lot

in solving actual problems in physics and economics and other fields).

Regardless of where we get an equation like this, we know that both sides are equal, so

the derivatives of both sides are equal. So using the chain rule and thinking of y as a function

of x, we can simply take derivatives of both sides, and then do some algebra to find y′.

Figure 7.1: Left: The circle x2 + y2 = 25. Center: the folium of Descartes x3 + y3 = 6xy.

Right: y cos(x) = 1 + sin(xy)

If we want to find tangent lines for these curves, we can use implicit differentiation.

Essentially, we take the derivative of both sides of the equation, treating y as a function of

x and applying the chain rule.

Example 7.1. • If x2 + y2 = 25, then

d

dx

(
x2 + y2

)
=

d

dx
(25)

2x+ 2y
dy

dx
= 0

dy

dx
=
−x
y
.

Thus at the point, say, (3, 4) (check that this is on the circle!), we have that dy
dx

(3, 4) =
−3
4

= −3/4. Thus the equation of the line tangent to the circle at (3, 4) is y − 4 =

−3
4
(x− 3).
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• If x3 + y3 = 6xy, then

d

dx

(
x3 + y3

)
=

d

dx
(6xy)

3x2 + 3y2
dy

dx
= 6

(
y + x

dy

dx

)
(3y2 − 6x)

dy

dx
= 6y − 3x2

dy

dx
=

6y − 3x2

3y2 − 6x
.

At the point (0, 0) this doesn’t actually give us a useful answer; if you look at the

picture in Figure 7.1, you see that there’s not a clear tangent line there since the curve

crosses itself.

In contrast, at the point (3, 3) we have that

dy

dx
=

18− 27

27− 18
= −1

and the equation of the tangent line is y − 3 = −(x− 3).

• If y cos(x) = 1 + sin(xy), then

d

dx
(y cos(x)) =

d

dx
(1 + sin(xy))

dy

dx
cos(x)− y sin(x) = cos(xy)

(
y + x

dy

dx

)
dy

dx
(cos(x)− x cos(xy)) = y cos(xy) + y sin(x)

dy

dx
=
y cos(xy) + y sin(x)

cos(x)− x cos(xy)
.

• If
√
xy = 1 + x2y, then

d

dx

√
xy =

d

dx

(
1 + x2y

)
1

2
(xy)−1/2

(
y + x

dy

dx

)
= 2xy + x2

dy

dx

dy

dx

(
x2 − 1

2
x(xy)−1/2

)
=

1

2
(xy)−1/2y − 2xy

dy

dx
=

1
2
(xy)−1/2y − 2xy

x2 − 1
2
x(xy)−1/2

.
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Example 7.2. We can also compute second derivatives implicitly. If 9x2 + y2 = 9 then we

have

18x+ 2y
dy

dx
= 0

dy

dx
= −9x

y

d2y

dx2
=

d

dx

(
−9x

y

)
= −

9y − 9x dy
dx

y2

= −
9y − 9x(−9x

y
)

y2

= −
9y + 81x2

y

y2

We see that at the point (0, 3) we have y′ = 0 and y′′ = −3. At the point (
√

5/3, 2), then

y′ = −3
√
5

2
and y′′ = −18+ 45

2

4
.

Example 7.3. Find y′′ if x6 + 3
√
y = 1. Then find the first and second derivatives at the

point (0, 1).

6x5 +
1

3
y−2/3y′ = 0

−18x5y2/3 = y′

−18(5x4y2/3 +
2

3
x5y−1/3y′) = y′′

−18(5x4y2/3 +
2

3
x5y−1/3(−18x5y2/3)) = y′′

Thus at (0, 1), we have y′ = 0 and y′′ = 0. So the tangent line to the curve is horizontal at

the point (0, 1).

We can also use implicit differentiation on relationships that apply to functions.

Example 7.4. Suppose we have some function f such that 8f(x) + x2(f(x))3 = 24, and

we want to find a linear approximation of f near f(4) = 1. (Say we’ve measured this
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experimentally and now want to understand or compute with the function). Then we have

d

dx

(
8f(x) + x2(f(x))3

)
=

d

dx
10

8f ′(x) + 2x(f(x))3 + 3x2(f(x))2f ′(x) = 0

8f ′(4) + 2 · 4 · 13 + 3 · 42 · 12f ′(4) = 0

8f ′(4) + 8 + 48f ′(4) = 0

and thus f ′(4) = −1/7.

This leaves us with a question, though. We know f(1); can we figure out the value of f

at other points?

From the work we just did, we can see the linear approximation is

f(x) ≈ f ′(4)(x− 4) + f(4) =
−1

7
(x− 4) + 1.

Thus we compute

f(5) ≈ −1

7
(5− 4) + 1 = 1 +

−1

7
=

6

5
≈ .857.

Checking Mathematica, we see that the actual solution is .879. So we were pretty close. But

can we get closer?

7.2 Differential Equations

In the previous section we got the equation

8f ′(x) + 2x(f(x))3 + 3x2(f(x))2f ′(x) = 0.

An equation like this is called a differential equation because it relates a function to its

derivative. Differential equations come up very often in science, economics, and other fields

that use mathematical modeling, because it is often easy to state a natural law or modelling

assumption in this form.

For a simple example, consider the phrase “acceleration is proportional to force.” Recall

that acceleration is the second derivative of position. If force is itself a function of position,

this translates to a differential equation, relating f ′′(x) to f(x).

Example 7.5. Hooke’s law tells us that the force a spring exerts is proportional to the

displacement of the spring; that is, for any given spring there is some constant k such

that F (t) = −kf(t). Since F (t) = ma(t) = mf ′′(t), this gives us the differential equation

mf ′′(t) = −kf(t) or

f ′′(t) = − k
m
f(t).
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For simplicity let’s assume k = m so we have f ′′(t) = −f(t).

Can we find a solution for this? We can start with the really silly or “trivial” solution.

If the spring starts at neutral, it will never move, so we’d expect f(t) = 0. And indeed it is:

0′′ = 0 = −0, so the funcion f(t) = 0 is a solution to this differential equation.

Can we find a solution that involves any motion at all? We’re looking for a function

where f ′′(t) = −f(t). And we actually know two of these: f(t) = sin(t) and f(t) = cos(t)

both satisfy this differential equation. And this is why the equation for “simple harmonic

motion” is built up out of sin and cos functions.

There are many different solutions we can use; for example, 3 sin(t) + 5 cos(t) = 17 is

a solution to this differential equation. To pick out the specific solution we need to know

“initial conditions” that tell us the starting position.

There is a rich and powerful theory for solving differential equations. We will not be

investigating it in this course, but there are a few questions we can address.

Example 7.6. Suppose f(x) = ax2 + bx+ c satisfies f ′(x) = 4x+ 3 and f(0) = 0. What is

f(x)?

We compute f ′(x) = 2ax+b = 4x+3, so we have a = 2, b = 3. Then f(x) = 2x2 +3x+c.

Since f(0) = 0 we have c = 0, and thus f(x) = 2x2 + 3x.

Example 7.7. Suppose f(x) = ax2 + bx+ c is a polynomial, and we have f(0) = 0, f ′(0) =

1, f ′′(0) = 2. What can we say about f(x)?

We see that f(0) = c = 0, f ′(x) = 2ax + b so f ′(0) = b = 1, and f ′′(x) = 2a so

f ′′(0) = 2a = 2. Thus a = b = 1 and c = 0, so f(x) = x2 + x.

Example 7.8. Suppose g(x) = ax2+bx+c is a polynomial, with g(1) = 2, g′(2) = 3, g′′(3) =

4. What can we say about g?

We have g(1) = a + b + c. g′(x) = 2ax + b so g′(2) = 4a + b = 3, and g′′(x) = 2a so

g′′(3) = 2a = 4. Thus we have a = 2. Going back to g′ we see that 8 + b = 3 so b = −5.

Then plugging into g we have 2− 5 + c = 2 so c = 5. Thus g(x) = x2 − 5x+ 5.

Example 7.9. Confirm that f(x) = x2 + x+ 1 satisfies 2f(x)− xf ′(x) = x+ 2.

We compute f ′(x) = 2x+ 1, so 2f(x)− xf ′(x) = 2x2 + 2x+ 2− (2x2 + x) = x+ 2.

7.3 Euler’s Method

We cannot develop a general method of exactly solving even simple differential equations in

this course, since this requires integrals. But we can come up with approximate solutions.

And sometimes approximate solutions are the best that anyone can do!
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Example 7.10. Let’s consider about the simplest possible non-trivial differential equation:

f ′(x) = f(x). And let’s add in the information that f ′(0) = 1. What can we say about the

values of this function?

Let’s start by approximating f(1). From our differential equation we know that f ′(0) =

f(0) = 1, so by linear approximation we have

f(1) ≈ f ′(0)(1− 0) + f(0) = 1 + 1 = 2.

But of course this isn’t an exact answer. Can we be more precise?

Recall our approximations get less and less accurate as we get farther away from our base

point, because the derivative keeps changing. We can improve our accuracy by stopping

halfway through to correct our estimate of the rate of change.

f(.5) ≈ f ′(0)(.5− 0) + f(0) = 1 · .5 + 1 = 1.5

f(1) ≈ f ′(.5)(1− .5) + f(.5) ≈ 1.5(.5) + 1.5 = 2.25.

We can always get more precision by using more steps.

f(1/4) ≈ f ′(0)(1/4− 0) + f(0) = 1(1/4) + 1 = 5/4

f(1/2) ≈ f ′(1/4)(1/2− .1/4) + f(1/4) ≈ 5/4(1/4) + 5/4 = 25/16

f(3/4) ≈ f ′(1/2)(3/4− 1/2) + f(1/2) ≈ 25

16
(1/4) +

25

16
=

125

64

f(1) ≈ f ′(3/4)(1− 3/4) + f(3/4) ≈ 125

64
· 1

4
+

125

64
=

625

256
≈ 2.44.

We will see in Section 8 that the exact solution to this problem is e ≈ 2.71828.

(We will make a note to recall later that with one step, we had (1 + 1)1; with two steps,

we had (3/2)2; and with four steps we had (5/4)4. We can see that in general, with n steps

we will have ((n+ 1)/n)n as our approximation).

This approach to approximating solutions to a differential equation is known as Euler’s

Method :

1. Pick a step size δ.

2. Start with a base point whose value is known: f(x0) = y0.

3. Use the differential equation to compute f ′(x0).

4. Use a linear approximation to approximate f(x0 + δ).
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5. Take this as your new base point, compute f ′(x0+δ), and then approximate f(x0+2δ).

6. Repeat until you have approximated your desired output.

Example 7.11. Suppose f ′(t) = f(t) − f(t)2/2, and f(0) = 1. Let us approximate f(3)

using 3 steps, for a step size of 1.

f(1) ≈ f ′(0)(1− 0) + f(0) = (1− 12/2)(1) + 1 = 3/2.

f(2) ≈ f ′(1)(2− 1) + f(1) ≈

(
3

2
−
(
3
2

)2
2

)
(1) +

3

2
=

3

8
+

3

2
=

15

8
.

f(3) ≈ f ′(2)(3− 2) + f(2) ≈

(
15

8
−
(
15
8

)2
2

)
(1) +

15

8
=

15

128
+

15

8
=

255

128
.

Thus we estimate f(3) ≈ 1.99.

Example 7.12. Suppose f ′(x) = x − f(x) and f(1) = 3. Let’s approximate f(2) with a

step size of 1/4. We have

f(5/4) ≈ f ′(1)(1/4) + f(1) = (1− 3)(1/4) + 3 =
5

2

f(3/2) ≈ f ′(5/4)(1/4) + f(5/4) ≈
(

5

4
− 5

2

)
1

4
+

5

2
=

35

16

f(7/4) ≈ f ′(3/2)(1/4) + f(3/2) ≈
(

3

2
− 35

16

)
1

4
+

35

16
=

129

64

f(2) ≈ f ′(7/4)(1/4) + f(7/4) ≈
(

7

4
− 129

64

)
1

4
+

129

64
=

499

256
.

Thus we estimate f(2) ≈ 499
256
≈ 1.95.

7.4 Word Problems and Related Rates

Sometimes we have word problems that require us to translate verbal information into equa-

tions, and then solve the problem.

Checklist of steps for solving word problems:

1. Draw a picture.

2. Think about what you expect the answer to look like. What is physically plausible?

3. Create notation, choose variable names, and label your picture.

(a) Write down all the information you were given in the problem.
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(b) Write down the question in your notation.

4. Write down equations that relate the variables you have.

5. Abstractly: “solve the problem.” Concretely, in a related rates problem, you should

probably differentiate your equation.

6. Plug in values and read off the answer.

7. Do a sanity check. Does you answer make sense? Are you running at hundreds of miles

an hour, or driving a car twenty gallons per mile to the east?

Example 7.13. Suppose one car drives north at 40 mph, and an hour later another starts

driving west from the same place at 60 mph. After a second hour, how quicly is the distance

between them increasing?

Write a for the distance the first car has traveled, and b for the distance the second car

has traveled. We have that a = 80, b = 60, a′ = 40, b′ = 60. If the distance between the cars

is d then after two hours, d = 100, and we have

d2 = a2 + b2

2dd′ = 2aa′ + 2bb′

2 · 100 · d′ = 2 · 80 · 40 + 2 · 60 · 60

d′ =
3200 + 3600

100
= 68,

so the distance between the cars is increasing at 68 mph. This seems reasonable because the

cars are traveling at 40 mph and 60 mph.

Example 7.14. A twenty foot ladder rests against a wall. The bit on the wall is sliding

down at 1 foot per second. How quickly is the bottom end sliding out when the top is 12

feet from the ground?

Let h be the height of the ladder on the wall, and b be the distance of the foot of the

ladder from the wall. Then h = 12, h′ = −1, and b =
√

400− 144 = 16. We have

h2 + b2 = 400

2hh′ + 2bb′ = 0

2 · 12 · (−1) + 2 · 16 · b′ = 0

b′ =
24

32
= 3/4
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so the foot of the ladder is sliding away from the wall at 3/4 ft/s. Again, the direction of

the sliding is correct (away from the wall), and the number seems plausible.

Example 7.15. A spherical balloon is inflating at 12 cm3 per second. How quickly is the

radius increasing when the radius is 3 cm?

A sphere has volume V = 4
3
πr3. We have V ′ = 12 and r = 3. We compute

V ′ = 4πr2r′

12 = 4π(3)2r′

r′ =
1

3π

So the radius is increasing by 1/3π cm per second.

Example 7.16. A rectangle is getting longer by one inch per second and wider by two inches

per second. When the rectangle is 5 inches long and 7 inches wide, how quickly is the area

increasing?

We have l = 5, w = 7, l′ = 1, w′ = 2, and A = lw. Taking a derivative gives us

A′ = lw′ + wl′ = 5 · 2 + 7 · 1 = 17 square inches per second.

Example 7.17. An inverted conical water tank with radius 2m and height 4m is being filled

with water at a rate of 2m3/min. How fast is the water rising when the water is 3 m tall?

Let h be the current height of the water, r the current radius, and V the current volume

of water. We know that h = 3, and by similar triangles we see that h
r

= 4
2

and thus r = h/2.

We know that V ′ = 2, and the volume formula for a cone gives us V = 1
3
πr2h. We compute

V =
1

3
π

(
h

2

)2

h

=
1

3
π
h3

4

V ′ =
π

4
h2h′

2 =
π

4
32h′

8

9π
= h′,

so the water level is rising at 8
9π

meters per minute.

Example 7.18. A street light is mounted at the top of a 15-foot-tall pole. A six-foot-tall

man walks straight away from the pole at 5 feet per second. How fast is the tip of his shadow

moving when he is forty feet from the pole?
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Let d be the distance of the man from the pole, and L be the distance from the pole to

the tip of his shadow. We have d′ = 5 and we set up a similar triangles equation.

15

L
=

6

L− d
6L = 15L− 15d

9L = 15d d =
3

5
L

d′ =
3

5
L′ 5 =

3

5
L′

and thus the tip of his shadow is moving at 25
3

feet per second.

Example 7.19. A lighthouse is located three kilometers away from the nearest point P on

shore, and its light makes four revolutions per minute. How fast is the beam of light moving

along the shoreline 1 kilometer from P?

Let’s say the angle of the light away from P is θ, and the distance from P is d. Then

we have d = 1 and θ′ = 8π (in radians per minute). We also have the relationship that

tan θ = d
3
.

Taking the derivative gives us sec2(θ)·θ′ = d′/3. We need to work out sec2(θ), but looking

at our triangle we see that the adjacent side is length 3 and the hypotenuse is length
√

10

(by the Pythagorean theorem), so we have sec2(θ) = (
√

10/3)2 = 10/9.

Thus we have d′ = 3 sec2(θ) · 8π = 80π
3

kilometers per second.

Example 7.20. A kite is flying 100 feet over the ground, moving horizontally at 8 ft/s. At

what rate is the angle between the string and the ground decreasing when 200ft of string is

let out?

Call the distance between the kite-holder and the kite d and the angle between the string

and the ground θ. When the length of string is 200 then d =
√

2002 − 1002 = 100
√

3. We

have that d′ = 8 (since the angle is decreasing, the kite must be getting farther away). And

finally we have the relationship tan θ = 100
d

by the definition of tan in terms of triangles.

Then we have

tan θ = 100d−1

sec2(θ)θ′ = −100d−2d′

θ′ =
−100 · 8 cos2(θ)

d2
.

We see that cos(θ) = 100
√
3

200
=
√

32, so we have

θ′ =
−100 · 8 · 3/4

(100
√

3)2

= − 8

100 · 4
=
−1

50
.
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So the angle between the string and the ground is decreasing at a rate of 1/50 per second.

(Note: radians are unitless!)
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