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1 Vectors and Vector Spaces

1.1 What is a vector?

In this course we want to study “high-dimensional spaces” and “vectors”. That’s not very

specific, though, until we explain exactly what we mean by those things.

An important idea of this course is that it is helpful to study the same things from more

than one perspective; sometimes a question that is difficult from one perspective is easy from

another, so the ability to have multiple viewpoints and translate between them is extremely

useful.

In this course we will take three different perspectives, which I am calling “geometric”,

“algebraic”, and “formal”. The first involves spatial reasoning and pictures; the second

involves arithmetic and algebraic computations; the third involves formal definitions and

properties. The formal perspective is the most abstract and sometimes the most confusing,

but often the most fruitful: the formal perspective allows us to take problems that don’t

look like they involve anything we would call “vectors”, and apply the techniques of linear

algebra to them anyway.

A common definition of a vector is “something that has size and direction.” This is a

geometric viewpoint, since it calls to mind a picture. We can also view it from an algebraic

point of view by giving it a set of coordinates. For instance, we can specify a two-dimensional

vector by giving a pair of real numbers (x, y), which tells us where the vector points from

the origin at (0, 0). From the formal perspective we just have “a vector”, which must satisfy

certain conditions we’ll state later.

In the table below I have several concepts, and ways of thinking about them in each

perspective. It’s fine if you don’t know what some of these things mean, especially in the

“formal” column; if you knew all of this already you wouldn’t need to take this course.

Geometric Algebraic Formal

size and direction n-tuples vectors

consecutive motion pointwise addition vector addition

stretching, rotations, reflections matrices linear functions

number of independent directions number of coordinates dimension

plane system of linear equations subspace

angle dot product inner product

Length magnitude norm
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1.2 The Cartesian Plane

We’ll start by considering the “Cartesian plane”, (named after the French mathematician

René Descartes, who is credited with inventing the idea of putting numbered cordinates on

the plane).

As probably looks familiar from high school geometry, given two points A and B in the

plane, we can write
−→
AB for the vector with initial point A and terminal point B.

Since a vector is just a length and a direction, the vector is “the same” if both the initial

and terminal points are shifted by the same amount. If we fix an origin point O, then any

point A gives us a vector
−→
OA. Any vector can be shifted until its initial point is O, so each

vector corresponds to exactly one point. We call this standard position.

We represent points algebraically with pairs of real numbers, since points in the plane

are determined by two coordinates. We use R2 = {(x, y) : x, y ∈ R} to denote the set of

all ordered pairs of real numbers; thus R2 is an algebraic description of the Cartesian plane.

(We use R to denote the set of real numbers, and the superscript 2 tells us that we need two

of them). We define the origin O to be the “zero” point (0, 0).

Definition 1.1. If A = (x, y) is a point in R2, then we denote the vector
−→
OA by

[
x

y

]
.

We can also denote this vector [x, y]T (You can read the “T” as “transpose”; this has a

specific meaning which we will discuss eventually). Poole sometimes just writes [x, y], and

when we don’t particularly care about the geometric distinction between a point and a vector

we will often write (x, y).

However, the vertical orientation is very important for a lot of calculations we will want

to do, so we will use it when it isn’t terribly inconvenient.

If we want to discuss “a vector” without specifying any coordintes, we will use a single

letter, generally either boldface (v) or with an arrow on top (~v).

The vector
−→
OO can’t really be drawn—it’s the vector with zero length—but it is very

important. We call it the zero vector and write it as ~0 or 0.

Example 1.2. Suppose A = (2, 3) and B = (1, 5). Then the vector
−→
AB has displacement

in the x direction of 1− 2 = −1, and in the y direction of 5− 3 = 2. Thus it is the same as

the vector

[
−1

2

]
which begins at (0, 0) and ends at (−1, 2).

If we want to take the same vector
−→
AB and put its initial point at (−1, 2), then the

terminal point will have x coordinate −1− 1 = −2 and y-coordinate 2 + 2 = 4, and thus be

at the point (−2, 4).
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1.2.1 Scalar Multiplication

Geometrically, a vector is a direction and a distance. A natural question to ask is “what

happens if we go in the same direction, but twice as far?” Or three times, or five times, or

π times as far?

Definition 1.3. If v is a vector and r is a positive real number, we define scalar multiplication

by setting r · v to be a vector with the same direction as v, but with its length stretched by

a factor of r.

If r is a negative real number then we define r · v to be the vector with the opposite

direction from v, and length equal to |r| times the length of v.

We define 0 · v = 0 to be the zero vector.

Remark 1.4. Notice that this means −1 · v is a vector of the same length, but pointing in

the opposite direction. So (−1) ·
−→
AB =

−→
BA.

Example 1.5. Let v =

[
1

3

]
. Then we see that 2·v must go twice as far in the same direction,

and thus 2 · v =

[
2

6

]
. Similarly, −2 · v =

[
−2

−6

]
. Of course, we know that 0 · v = 0 =

[
0

0

]
.

Looking at these examples suggests an algebraic rule for scalar multiplication:

Definition 1.6. If v =

[
v1

v2

]
is a vector and r is a real number, then we define scalar

multiplication by b · v = b

[
v1

v2

]
=

[
bv1

bv2

]
. We sometimes say that scalar multiplication is

given by componentwise multiplication.

Example 1.7. If v =

[
3

5

]
then 7 · v =

[
21

35

]
and π · v =

[
3π

5π

]
.

Remark 1.8. It is very important that scalar multiplication combines two different types of

information. We have a real number r, which is a “size” without direction. We also have a

vector v which is a magnitude and direction, and we multiply these two things together.

We cannot multiply two vectors to get another vector (outside of some very specific

circumstances like the cross product). We can, of course, multiply two scalars together to

get another scalar; you have been doing that since elementary school.
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1.2.2 Vector Addition

Another question to ask about geometric vectors is “what happens if we go in this direction

for this distance, and then once we get there, go in that direction for that distance?” In our

diagram of the plane, this is represented by taking two vectors and placing them “head-to-

tail”.

Definition 1.9. If v =
−→
AB and w =

−−→
BC, then we define vector addition by v + w =

−→
AC.

Example 1.10. If A = (1, 2), B = (3, 1), C = (5,−1), then we have

[
2

−1

]
+

[
2

−2

]
=

−→
AB +

−−→
BC =

−→
AC =

[
4

−3

]
.

Example 1.11. If v =

[
5

2

]
and w =

[
−4

1

]
then we can set A = (0, 0), B = (5, 2), C = (1, 3)

and have v =
−→
AB and w =

−−→
BC. Then v + w = AC =

[
1

3

]
.

Drawing a picture every time we want to add vectors gets tedious very quickly. Fortu-

nately, vector addition is easy algebraically: we can just do componentwise addition.

Definition 1.12. Algebraically, we define addition of vectors by

[
v1

v2

]
+

[
w1

w2

]
=

[
v1 + w1

v2 + w2

]
.

You can see that this gives the same result as the head-to-tail method.

Remark 1.13. Given two vectors u and v, we can form a parallelogram with those vectors

as two of its sides. We call this the parallelogram determined by u and v. In this case, we

see that u + v is the vector corresponding to the diagram of the parallelogram.

1.3 Threespace and Rn

All of the work in section 1.2 took place in the “two-dimensional” plane. We can easily

extend this work to three-dimensional space. Where each point in the plane requires two

coordinates to express, each point in threespace requires three coordinates.

Definition 1.14. We define Euclidean threespace to be the three-dimensional space de-

scribed by three real coordinates. We notate it R3. The point (0, 0, 0) is called the origin

and often notated O.
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This describes familiar three-dimensional space, in which we all (apparently) live. Just

as in the Cartesian plane R2, we can think about vectors between points.

Example 1.15. Let A = (3, 2,−1) and B = (5,−2, 3). Then we have

−→
OA =


3

2

−1

 , −−→
OB =


5

−2

3

 , and
−→
AB =


2

−4

4

 .

−5 −4 −3 −2 −1
1

2
3

4
5

−3

−2

−1

1

2

3

−3

−2

−1

1

2

3

A

B

x

yz

We can do vector addition and scalar multiplication as before, too.
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Example 1.16. Let v =


1

2

3

 and w =


4

−2

3

 . Then

v + w =


5

0

6

 , 3 · v =


3

6

9

 , and (−2) ·w =


−8

4

−6

 .
We have so far defined two-dimensional space and three-dimensional space. Geometrically

it’s hard to go farther, since most of us can’t visualize a four- or five-dimensional space.

(The Greeks actually argued that while you could raise a number to the second power or

the third power, it made no sense to talk about 34 since there was no reasonable geometric

interpretation).

But algebraically, there’s no difficulty in extending our definitions to higher dimensions

and more coordinates in our vectors. (This is probably a large portion of why this course is

called “linear algebra” and not “linear geometry”).

Definition 1.17. We define real n-dimensional space to be the set of n-tuples of real num-

bers, Rn = {(x1, x2, . . . , xn) : xi ∈ R}.
By “abuse of notation” we will also use Rn to refer to the set of vectors in Rn. We define

scalar multiplication and vector addition by

r ·


x1

x2
...

xn

 =


rx1

rx2
...

rxn




x1

x2
...

xn

 +


y1

y2
...

yn

 =


x1 + y1

x2 + y2
...

xn + yn

 .

Example 1.18. Let v = (1, 3, 2, 4) and w = (5,−1, 2, 8) be vectors in R4. Then

v + w =


1

3

2

4

 +


5

−1

2

8

 =


6

2

4

12

 , −3 · v =


−3

−9

−6

−12

 .

The next question you might ask is “why do we want to talk about Rn?” R2 and R3

have obvious geometric interpretations, but it’s hard to imagine the geometry of R4, and far

harder to imagine the geometry of R300, or think of what that might describe. I visit very

few three hundred dimensional spaces in my life.
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And it’s true that when we want to talk about “geometry” per se we will find ourselves

returning to R2 and R3; throughout the course I will be giving low-dimensional examples

so you have pictures to mentally reference, and we will do some work on specifically three-

dimensional geometry.

But it turns out that a lot of very interesting things we care about “look like” Rn in a

very specific way. In 1.4 we will talk about what it means to look like Rn in this way.

1.4 Vector Spaces

We will now define the main object we’ll be studying in this course. The following definition

will look long and cumbersome. The important thing to remember is that we’re describing

things that look like Rn; so if you get confused, think about Rn for comparison.

Definition 1.19. Let V be a set together with two operations:

• A vector addition which allows you to add two elements of V and get a new element

of V . If v,w ∈ V then the sum is denoted v + w and must also be an element of V .

• A scalar multiplication which allows you to multiply an element of V by a real number

(or “scalar”) and get a new element of V . If r ∈ R and v ∈ V then the scalar multiple

is denoted r · v and must also be an element of V .

Further, suppose the following axioms hold for any u,v,w ∈ V , and any r, s ∈ R:

1. (Closure under addition) u + v ∈ V

2. (Additive commutativity) u + v = v + u

3. (Additive associativity) (u + v) + w = u + (v + w)

4. (Additive identity) There is an element 0 ∈ V called the “zero vector”, such that

u + 0 = u for every u.

5. (Additive inverses) For each u ∈ V there is another element −u ∈ V such that u +

(−u) = 0.

6. (Closue under scalar multiplication) ru ∈ V

7. (Distributivity) r(u + v) = ru + rv

8. (Distributivity) (r + s)u = ru + su
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9. (Multiplicative associativity) r(su) = (rs)u

10. (Multiplicative Identity) 1u = u.

Then we say V is a Vector Space, and we call its elements vectors.

Example 1.20. Rn is a vector space, with the previously defined vector addition and scalar

multiplication. We check:

Let u = (u1, . . . , un).v = (v1, . . . , vn),w = (w1, . . . , wn) ∈ Rn, r, s ∈ R. Then, knowing

the usual rules of commutativity and associativity of basic arithmetic, we can compute:

1. u + v = (u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn) ∈ Rn.

2.

u + v = (u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn)

= (v1 + u1, . . . , vn + un) = (v1, . . . , vn) + (u1, . . . , un) = v + u

3.

(u + v) + w = (u1 + v1, . . . , un + vn) + (w1, . . . , wn) = (v1 + u1 + w1, . . . , vn + un + wn)

= (v1, . . . , vn) + (u1 + w1, . . . , un + wn) = v + (u + w)

4. We have 0 = (0, . . . , 0). Then

0 + v = (0 + v1, . . . , 0 + vn) = (v1, . . . , vn) = v.

5. Set −u = (−u1, . . . ,−un). Then

u + (−u) = (u1 + (−u1), . . . , un + (−un)) = (0, . . . , 0) = 0.

6.

ru = r(u1, . . . , un) = (ru1, . . . , run) ∈ R.

7.

r(u + v) = r(u1 + v1, . . . , un + vn) = (r(u1 + v1), . . . , r(un + vn))

= (ru1 + rv1, . . . , run + rvn) = (ru1, . . . , run) + (rv1, . . . , rvn) = ru + rv.
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8.

(r + s)u = (r + s)(u1, . . . , un) = ((r + s)u1, . . . , (r + s)un)

= (ru1 + su1, . . . , run + sun) = (ru1, . . . , run) + (su1, . . . , sun) = ru + su.

9.

r(su) = r(su1, . . . , sun) = (rsu1, . . . , rsun) = rs(u1, . . . , un).

10.

1u = 1(u1, . . . , un) = (1 · u1, . . . , 1 · un) = (u1, . . . , un) = u.

Remark 1.21. That took forever and was incredibly tedious. (It’s not actually difficult, just

extremely annoying). I will ask you to do this exactly once during this class.

So what else is a vector space and “looks like Rn”?

Example 1.22. Let P(x) = {a0 +a1x+ · · ·+anx
n : n ∈ N, ai ∈ R} be the set of polynomials

with real coefficients. Define addition by

(a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n) = (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)xn

and define scalar multiplication by

r(a0 + a1x+ · · ·+ anx
n) = ra0 + ra1x+ · · ·+ ranx

n.

Then P(x) is a vector space.

Let r, s ∈ R be scalars, and f(x) = a0 + · · · + anx
n, g(x) = b0 + · · · + bnx

n, h(x) =

c0 + · · ·+ cnx
n be elements of P(x). Then

1.

f(x)+g(x) = (a0 + · · ·+ anx
n)+(b0 + · · ·+ bnx

n) = (a0+b0)+· · ·+(an+bn)xn ∈ P(x).

2.

f(x) + g(x) = (a0 + · · ·+ anx
n) + (b0 + · · ·+ bnx

n) = (a0 + b0) + · · ·+ (an + bn)xn

= (b0 + · · ·+ bnx
n) + (a0 + · · ·+ anx

n) = g(x) + f(x).
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3.

(f(x) + g(x)) + h(x) ((a0 + · · ·+ anx
n) + (b0 + · · ·+ bnx

n)) + (c0 + · · ·+ cnx
n)

= ((a0 + b0) + · · ·+ (an + bn)xn) + (c0 + · · ·+ cnx
n)

= ((a0 + b0 + c0) + · · ·+ (an + bn + c0)x
n)

= (a0 + · · ·+ anx
n) + ((b0 + c0) + · · ·+ (bn + cn)xn)

= (a0 + · · ·+ anx
n) + ((b0 + · · ·+ bnx

n) + (c0 + · · ·+ cnx
n))

= f(x) + (g(x) + h(x)).

4. We set 0 = 0 the zero polynomial. Then we see that

0 + f(x) = 0 + (a0 + · · ·+ anx
n) = (a0 + 0) + · · ·+ anx

n = a0 + · · ·+ anx
n = f(x)

so we have an additive identity.

5. Set −f(x) = (−a0) + · · ·+ (−an)xn. Then

f(x) + (−f(x)) = (a0 + (−a0)) + · · ·+ (an + (−an))xn = 0 + · · ·+ 0xn = 0.

6.

rf(x) = r(a0 + · · ·+ anx
n) = ra0 + · · ·+ (ran)xn ∈ P(x)

.

7.

r(f(x) + g(x)) = r((a0 + b0) + · · ·+ (an + bn)xn)

= (r(a0 + b0)) + · · ·+ (r(an + bn))xn

= (ra0 + rb0) + · · ·+ (ran + rbn)xn

= (ra0 + · · ·+ ranx
n) + (rb0 + · · ·+ rbnx

n)

= rf(x) + rg(x).

8.

(r + s)f(x) = (r + s)a0 + · · ·+ ((r + s)an)xn

= ra0 + sa0 + · · ·+ (ran + san)xn

= (ra0 + · · ·+ ranx
n) + (sa0 + · · ·+ sanx

n)

= r(a0 + · · ·+ anx
n) + s(a0 + · · ·+ anx

n) = rf(x) + sf(x).
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9.

(rs)f(x) = rsa0 + · · ·+ (rsan)xn = r(sa0) + · · ·+ (r(san))xn

= r(sa0 + · · ·+ (san)xn) = r(sf(x)).

10.

1f(x) = 1(a0 + · · ·+ anx
n) = 1a0 + · · ·+ (1an)xn = a0 + · · ·+ anx

n = f(x).

Example 1.23. Let F(R,R) = F be the set of functions from R to R—that is, functions

that take in a real number and return a real number, the vanilla functions of single-variable

calculus. Define addition by (f + g)(x) = f(x) + g(x) and define scalar multiplication by

(rf)(x) = r · f(x). Then F is a vector space. You will show this on your homework.

Example 1.24. The integers Z are not a vector space (under the usual definitions of addition

and multiplication). For instance, 1 ∈ Z but .5 · 1 = .5 6∈ Z.

(We only need to find one axiom that doesn’t hold to show that a set is not a vector

space, since a vector space must satisfy all the axioms).

Example 1.25. The closed interval [0, 5] is not a vector space (under the usual operations)

, since 3, 4 ∈ [0, 5] but 3 + 4 = 7 6∈ [0, 5].

Example 1.26. Let V = R with scalar multiplication given by r ·x = rx and addition given

by x⊕ y = 2x+ y. Then V is not a vector space, since x⊕ y = 2x+ y 6= 2y + x = y ⊕ x; in

particular, we see that 3⊕ 5 = 11 but 5⊕ 3 = 13.

There are many more examples of vector spaces, but as you can see it’s fairly tedious to

prove that any particular thing is a vector space. In section 2 we’ll develop a much easier

way to establish that something is a vector space, so we won’t develop any more examples

now.

1.5 Properties of Vector Spaces

The great thing about the formal approach is that we can show that anything that satisfies

the axioms of a vector space must aso follow some other rules. We’ll establish a few of those

rules here, and you will establish a few more in your homework. Of course, there’s a sense

in which the entire rest of this course will be spent establishing those rules.

Proposition 1.27 (Cancellation). Let V be a vector space and suppose u,v,w ∈ V are

vectors. If u + w = v + w, then u = v.
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Proof. By axiom we know that w has an additive inverse −w. Then we have

u + w = v + w

(u + w) + (−w) = (v + w) + (−w)

u + (w + (−w)) = v + (w + (−w)) Additive associativity

u + 0 = v + 0 Additive inverses

u = v Additive identity.

Proposition 1.28. The additive inverse −v of a vector v is unique. That is, if v + u = 0,

then u = −v.

Proof. Suppose v + u = 0. By the additive inverses property we know that v + (−v) = 0,

and thus v + u = v + (−v). By cancellation we have u = −v.

Remark 1.29. In our axioms we asserted that every vector has an inverse, but didn’t require

that there be only one.

Proposition 1.30. Suppose V is a vector space with u ∈ V a vector and r ∈ R a scalar.

Then:

1. 0u = 0

2. r0 = 0

3. (−1)u = −u.

Remark 1.31. We would actually be pretty sad if any of those statements were false, since it

would make our notation look very strange. (Especially the last statement). The fact that

these statements are true justifies us using the notation we use.

Proof. 1.

u = 1 · u = (0 + 1)u Multiplicative identity

= 0u + 1u Distributivity

= 0u + u Multiplicative identity

0 + u = 0u + u Additive identity

0 = 0u Cancellation
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2. We know that 0 = 0+0 by additive identity, so r0 = r(0+0) = r0+r0 by distributivity.

Then we have

0 + r0 = r0 + r0 additive identity

0 = r0 cancellation.

3. We have

v + (−1)v = 11 + (−1)v multiplicative inverses

= (1 + (−1))v distributivity

= 0v = 0.

Then by uniqueness of additive inverses, we have (−1)v = −v.

Example 1.32. We’ll give one last example of a vector space, which is both important and

silly.

We define the zero vector space to be the set {0} with addition given by 0 + 0 = 0 and

scalar multiplication given by r · 0 = 0. It’s easy to check that this is in fact a vector space.

Notice that we didn’t ask what “kind” of object this is; we just said it has the zero vector

and nothing else. As such, this could be the zero vector of any vector space at all. In section

2 we will talk about vector spaces that fit inside other vector spaces, like this one.

1.6 Subspaces

Our very first two examples of a vector space were the Cartesian plane and Euclidean three-

space. But we see that while we can think of them as totally distinct vector spaces, the plane

sits inside threespace, as a subset. In fact it sits inside it in a number of different ways; we

can start by taking the xy plane, the xz plane, or the yz plane.

Every vector space has a number of “smaller” vector spaces sitting inside of it. In this

section we will study “subspaces”, which are vector spaces that are subsets of another vector

space. They will be helpful in a number of ways; among these, the easiest way to show that

a new object is a vector space is to show that it is a subspace of a vector space we already

understand.

Definition 1.33. Let V be a vector space. A subset W ⊂ V is a subspace of V if W is also

a vector space with the same operations as V .
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Example 1.34. The Cartesian plane R2 is a subset of threespace R3. Similarly the line R1

is a subset of the plane R2. (And we can stack this up as high as we want; R7 ⊂ R8.

Example 1.35. Let V = R3 and let W = {(x, y, x + y) ∈ R3}. Geometrically, this is a

plane (given by z = x + y). We could in fact write W = {(x, y, z) : z = x + y}; this is a

more useful way to write it for multivariable calculus, but less useful for lienar algebra. W

is certainly a subset of V , so we just need to figure out if W is a subspace.

We could do this by checking all ten axioms, but that would take a very long time; we

want a better tool. And it seems like we should be able to avoid a lot of that work since we

already know many of the axioms hold in R3.

Proposition 1.36. Let V be a vector space and W ⊂ V . Then W is a subspace of V if and

only if the following three “subspace” conditions hold:

1. 0 ∈ W (zero vector);

2. Whenever u,v ∈ W then u + v ∈ W (Closed under addition); and

3. Whenever r ∈ R and u ∈ W then ru ∈ W (Closed under scalar multiplication).

Proof. Suppose W is a subspace of V . Then W is a vector space, so it contains a zero vector

and is closed under addition and multiplication by the definition of vector spaces.

Conversely, suppose W ⊂ V and the three subspace conditions hold. We need to check

the ten axioms of a vector space. But most of these properties are inherited from the fact

that any element of W is also an element of V , and W has the same operations as V .

Let u,v,w ∈ W (and thus u,v,w ∈ V ), and r, s ∈ R.

1. W is closed under addition by hypothesis.

2. u + v = v + u since V is a vector space.

3. (u + v) + w = u + (v + w) since V is a vector space.

4. 0 ∈ W by hypothesis, and u + 0 = u since V is a vector space.

5. −u = (−1)u ∈ W by closure under scalar multiplication.

6. W is closed under scalar multiplication by hypothesis.

7. r(u + v) = ru + rv since V is a vector space.

8. (r + s)u = ru + su since V is a vector space.
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9. (rs)u = r(su) since V is a vector space.

10. 1u = u since V is a vector space.

Thus W satisfies the axioms of a vector space, and is itself a vector space.

Example 1.37. To continue our earlier example of W = {(x, y, x + y)}, we only need to

check three things. If (x1, y1, x1 + y1), (x2, y2, x2 + y2) ∈ W then
x1

y1

x1 + y1

 +


x2

y2

x2 + y2

 =


x1 + x2

y1 + y2

(x1 + x2) + (y1 + y2)

 ∈ W.
If r ∈ R, then

r


x

y

x+ y

 =


rx

ry

(rx) + (ry)

 ∈ W.
And the zero vector is 

0

0

0

 =


0

0

0 + 0

 ∈ W.
Thus W is a subspace of V .

Example 1.38. Let V = R2 and let W = {(x, x2)} = {(x, y) : y = x2} ⊂ V . Then W is not

a subspace (and thus not a vector space):

W does in fact contain the zero vector (0, 0) = (0, 02). But we see that (1, 1) ∈ W , and

(1, 1) + (1, 1) = (2, 2) 6∈ W . Thus W is not a subspace.

Example 1.39. Let V = R3 and let W = {(x, 0, x) ∈ R3}. Is W a subspace of R3?

We need to check three things.

1. (0, 0, 0) ∈ W (“by inspection”, which basically means “look at it and see that this is

true”).

2. If (x, 0, x), (y, 0, y) ∈ W , then (x, 0, x) + (y, 0, y) = (x+ y, 0, x+ y) ∈ W .

3. If r ∈ R and (x, 0, x) ∈ W then r(x, 0, x) = (rx, 0, rx) ∈ W .

Example 1.40. Now let V = R3 and let W = {(x, 1, x) ∈ R3}. Is W a subspace of R3?

We need to check the three properties. But we see in fact that (0, 0, 0) 6∈ W so this is

not a subspace.
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Example 1.41. Let V = P(x) and let W = {a1x + · · · + anx
n} = xP(x) be the set of

polynomials with zero constant term. Is W a subspace of V ?

1. The zero polynomial 0 + 0x + · · ·+ 0xn = 0 certainly has zero constant term, so is in

W .

2. If a1x+ · · ·+ anx
n and b1x+ · · ·+ bnx

n ∈ W , then

(a1x+ · · ·+ anx
n) + (b1x+ · · ·+ bnx

n) = (a1 + b1)x+ · · ·+ (an + bn)xn ∈ W.

Alternatively, we can say that if we add two polynomials with zero constant term, their

sum will have zero constant term.

3. If r ∈ R and a1x+ · · ·+ anx
n ∈ W , then

r (a1x+ · · ·+ anx
n) = (ra1)x+ · · ·+ (ran)xn

has zero constant term and is in W .

Thus W is a subspace of V .

Example 1.42. Let V = P(x) and let W = {a0 + a1x} be the space of linear polynomials.

Then W is a subspace of V .

1. The zero polynomial 0 + 0x ∈ W .

2. If a0 + a1x, b0 + b1x ∈ W , then (a0 + a1x) + (b0 + b1x) = (a0 + b0) + (a1 + b1)x ∈ W .

3. If r ∈ R and a0 + a1x ∈ W , then r(a0 + a1x) = ra0 + (ra1)x ∈ W .

Example 1.43. Let V = P(x) and let W = {1 + ax} be the space of linear polynomials

with constant term 1. Is W a subspace of V ?

No, because 0 = 0 + 0x 6∈ W .

Exercise 1.44. Fix a natural number n ≥ 0. Let V = P(x) and let W = Pn(x) = {a0 +

a1x+ · · ·+ anx
n} be the set of polynomials with degree at most n. Then Pn(x) is a subspace

of P(x).

Example 1.45. Let V = F(R,R) be the space of functions of one real variable, and let

W = D(R,R) be the space of differentiable functions from R to R. Is W a subspace of V ?

1. The zero function is differentiable, so the zero vector is in W .
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2. From calculus we know that the derivative of the sums is the sum of the derivatives; thus

the sum of differentiable functions is differentiable. That is, (f+g)′(x) = f ′(x)+g′(x).

So if f, g ∈ W , then f and g are differentiable, and thus f +g is differentiable and thus

in W .

3. Again we know that (rf)′(x) = rf ′(x). If f is in W , then f is differentiable. Thus rf

is differentiable and therefore in W .

Example 1.46. Let V = F(R,R) and let W = F([a, b],R) be the space of functions from

the closed interval [a, b] to R. We can view W as a subset of V by, say, looking at all the

functions that are zero outside of [a, b]. Is W a subspace of V ?

1. The zero function is in W .

2. If f and g are functions from [a, b]→ R, then (f + g) is as well.

3. If f is a function from [a, b]→ R, then rf is as well.

Example 1.47. Let V = F(R,R) and let W = F(R, [a, b]) be the space of functions from R
to the closed interval [a, b]. Is W a subspace of V ?

No! The simplest condition to check is scalar multiplication. Let f(x) = b be a function

in V . Let r = (b+ 1)/b. Then (rf)(x) = fb = b+ 1 and thus rf 6∈ W .
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