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3 Systems of Linear Equations

A linear equation is an equation of the form

a1x1 + · · ·+ anxn = b (1)

where a1, . . . , an, b ∈ R and x1, . . . , xn are unknowns or variables. We say that this equation

has n unknowns.

A system of linear equations is a system of the form

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

...
...

am1x1 + · · ·+ amnxn = bm

with the aij and bis all real numbers. We say this is a system of m equations in n unknowns.

Importantly, each equation sets a linear combination of the variables equal to some

number; we aren’t allowed to multiply variables together, or do anything else fancy with

them. We will see later that this allows us to use theorems about vector spaces to solve

systems of linear equations.

An element (x1, . . . , xn) ∈ Rn is a solution to a system of linear equations if all of the

equalities hold for that collection of xi. The solution set of a system of linear equations is

the set of all solutions, and we say two systems are equivalent if they have the same solution

sets.

We say that two systems of equations are equivalent if they have the same set of solutions.

Thus the process of solving a system of equations is mostly the process of converting a system

into an equivalent system that is simpler.

There are three basic operations we can perform on a system of equations to get an

equivalent system:

1. We can write the equations in a different order.

2. We can multiply any equation by a nonzero scalar.

3. We can add a multiple of one equation to another.

All three of these operations are guaranteed not to change the solution set; proving this is a

reasonable exercise. Our goal now is to find an efficient way to use these rules to get a useful

solution to our system.
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3.1 The matrix of a system

We need an efficient way to represent the array of numbers given by the aij and the bi. We

see these numbers are naturally laid out in a rectangular grid.

Definition 3.1. A (real) matrix is a rectangular array of (real) numbers. A matrix with m

rows and n columns is a m× n matrix, and we notate the set of all such matrices by Mm×n.

A m× n matrix is square if m = n, that is, it has the same number of rows as columns.

We will sometimes represent the set of n× n square matrices by Mn.

We will generally describe the elements of a matrix with the notation

(aij) =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

 .
We can then take the information from a system of linear equations and encode it in a

matrix. Right now, we will just use this as a convenient notational shortcut; we will see later

on in the course that this has a number of theoretical and practical advantages.

Definition 3.2. The coefficient matrix of a system of linear equations given by

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

...
...

am1x1 + · · ·+ amnxn = bm

is the matrix 
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn


and the augmented coefficient matrix is

a11 a12 . . . a1n b1

a21 a22 . . . a2n b2
...

...
. . .

...
...

am1 am2 . . . amn bm

 .
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Example 3.3. Suppose we have a system

a+ 4b+ 7c = 0

2a+ 5b+ 8c = 0

3a+ 6b+ 9c = 0.

Then the coefficient matrix is 
1 4 7

2 5 8

3 6 9


and the augmented coefficient matrix is

1 4 7 0

2 5 8 0

3 6 9 0


Earlier we listed three operations we can perform on a system of equations without

changing the solution set: we can reorder the equations, multiply an equation by a nonzero

scalar, or add a multiple of one equation to another. We can do analogous things to the

coefficient matrix.

Definition 3.4. The three elementary row operations on a matrix are

I Interchange two rows.

II Multiply a row by a nonzero real number.

III Replace a row by its sum with a multiple of another row.

Example 3.5. What can we do with our previous matrix? We can
1 4 7

2 5 8

3 6 9

 I→


2 5 8

1 4 7

3 6 9

 II→


2 5 8

2 8 14

3 6 9

 III→


2 5 8

0 3 6

3 6 9

 .
So how do we use this to solve a system of equations? The basic idea is to remove variables

from successive equations until we get one equation that contains only one variable—at which

point we can substitute for that variable, and then the others. To do that with this matrix,
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we have 
1 4 7 0

2 5 8 0

3 6 9 0

 III→


1 4 7 0

0 −3 −6 0

3 6 9 0

 III→


1 4 7 0

0 −3 −6 0

0 −6 −12 0


II→


1 4 7 0

0 1 2 0

0 −6 −12 0

 III→


1 4 7 0

0 1 2 0

0 0 0 0


 II→


1 0 −1 0

0 1 2 0

0 0 0 0


 .

What does this tell us? That our system of equations is equivalent to the system

a− c = 0

b+ 2c = 0

0 = 0.

You’ll notice that this matches what we got on homework 3.

Example 3.6. Solve the system of equations

a+ 2b+ c = 3

3a− b− 3c = −1

2a+ 3b+ c = 4.

This system has augmented coefficient matrix
1 2 1 3

3 −1 −3 −1

2 3 1 4

 III→


1 2 1 3

0 −7 −6 −10

2 3 1 4

 III→


1 2 1 3

0 −7 −6 −10

0 −1 −1 −2


II→


1 2 1 3

0 −7 −6 −10

0 1 1 2

 I→


1 2 1 3

0 1 1 2

0 −7 −6 −10

 III→


1 2 1 3

0 1 1 2

0 0 1 4


which gives us the system

a+ 2b+ c = 3

b+ c = 2

c = 4.

The last equation tells us c = 4, which then gives b = −2 and a = 3. We can check that this

solves the system.
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3.2 Row Echelon Form

We want to solve systems of linear equations, using these matrix operations. We want to be

somewhat more concrete about our goals: what exactly would it look like for a system to be

solved?

Definition 3.7. A matrix is in row echelon form if

• Every row containing nonzero elements is above every row containing only zeroes; and

• The first (leftmost) nonzero entry of each row is to the right of the first nonzero entry

of the above row.

Remark 3.8. Some people require the first nonzero entry in each nonzero row to be 1. This

is really a matter of taste and doesn’t matter much, but you should do it to be safe; it’s an

easy extra step to take by simply dividing each row by its leading coefficient.

Example 3.9. The following matrices are all in Row Echelon Form:
1 3 2 5

0 3 −1 4

0 0 −2 3




5 1 3 2 8

0 0 1 1 1

0 0 0 0 −7




1 1 5

0 −2 3

0 0 7

 .
The following matrices are not in Row Echelon Form:

1 1 1 1

1 1 1 1

1 1 1 1




3 2 5 1

0 0 1 3

0 5 1 2




1 3 5

0 1 2

0 0 3

0 0 1

 .
Definition 3.10. The process of using elementary row operations to transform a system

into row echelon form is Gaussian elimination.

A system of equations sometimes has a solution, but does not always. We say a system

is inconsistent if there is no solution; we say a system is consistent if there is at least one

solution.

Example 3.11. Consider the system of equations given by

x1 + x2 + x3 + x4 + x5 = 1

−1x1 +−1x2 + x5 = −1

−2x1 +−2x2 + 3x5 = 1

x3 + x4 + 3x5 = −1

x1 + x2 + 2x3 + 2x4 + 4x5 = 1.
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This translates into the augmented matrix

1 1 1 1 1 1

−1 −1 0 0 1 −1

−2 −2 0 0 3 1

0 0 1 1 3 −1

1 1 2 2 4 1


→



1 1 1 1 1 1

0 0 1 1 2 0

0 0 2 2 5 3

0 0 1 1 3 −1

0 0 1 1 3 0



→



1 1 1 1 1 1

0 0 1 1 2 0

0 0 0 0 1 3

0 0 0 0 1 −1

0 0 0 0 1 0


→



1 1 1 1 1 1

0 0 1 1 2 0

0 0 0 0 1 3

0 0 0 0 0 −4

0 0 0 0 0 −3


.

We see that the final two equations are now 0 = −4 and 0 = −3 ,s othe system is inconsistent.

Example 3.12. Let’s look at another system that is almost the same.

x1 + x2 + x3 + x4 + x5 = 1

−1x1 +−1x2 + x5 = −1

−2x1 +−2x2 + 3x5 = 1

x3 + x4 + 3x5 = 3

x1 + x2 + 2x3 + 2x4 + 4x5 = 4.

This translates into the augmented matrix

1 1 1 1 1 1

−1 −1 0 0 1 −1

−2 −2 0 0 3 1

0 0 1 1 3 3

1 1 2 2 4 4


→



1 1 1 1 1 1

0 0 1 1 2 0

0 0 2 2 5 3

0 0 1 1 3 3

0 0 1 1 3 3



→



1 1 1 1 1 1

0 0 1 1 2 0

0 0 0 0 1 3

0 0 0 0 1 3

0 0 0 0 1 3


→



1 1 1 1 1 1

0 0 1 1 2 0

0 0 0 0 1 3

0 0 0 0 0 0

0 0 0 0 0 0


.

We see this system is now consistent. Our three equations are

x1 + x2 + x3 + x4 + x5 = 1 x3 + x4 + 2x5 = 0 x5 = 3.
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Via back-substitution we see that we have

x5 = 3 x3 + x4 = −6 x1 + x2 = 4.

Thus we could say the set of solutions is {(α, 4− α, β,−6− β, 3)} ⊆ R5.

What we were just doing definitely worked, but even after we finished transforming the

matrix we still needed to do some more work. So we’d like to reduce the matrix even further

until we can just read the answer off from it.

Definition 3.13. A matrix is in reduced row echelon form if it is in row echelon form, and

the first nonzero entry in each row is the only entry in its column.

This means that we will have some number of columns that each have a bunch of zeroes

and one 1. Other than that we may or may not have more columns, which can contain

basically anything; we’ve used up all our degrees of freedom to fix those columns that contain

the leading term of some row.

Note that the columns we have fixed are not necessarily the first columns, as the next

example shows.

Example 3.14. The following matrices are all in reduced Row Echelon Form:
1 0 0 5

0 1 0 4

0 0 1 3




1 17 0 2 8

0 0 1 1 0

0 0 0 0 1




1 0 5

0 1 3

0 0 0

 .
The following matrices are not in reduced Row Echelon Form:

1 1 1 1

0 1 1 1

0 0 1 1




3 0 0 1

0 3 0 3

0 0 2 2




1 0 15 3

0 0 1 2

0 0 0 1

 .
Example 3.15. Let’s solve the following system by putting the matrix in reduced row

echelon form.

x1 + x2 + x3 + x4 + x5 = 2

x1 + x2 + x3 + 2x4 + 2x5 = 3

x1 + x2 + x3 + 2x4 + 3x5 = 2
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We have
1 1 1 1 1 2

1 1 1 2 2 3

1 1 1 2 3 2

→


1 1 1 1 1 2

0 0 0 1 1 1

0 0 0 1 2 0

→


1 1 1 1 1 2

0 0 0 1 1 1

0 0 0 0 1 −1



→


1 1 1 0 0 1

0 0 0 1 1 1

0 0 0 0 1 −1

→


1 1 1 0 0 1

0 0 0 1 0 2

0 0 0 0 1 −1


From this we can read off the solution x1 + x2 + x3 = 1, x4 = 2, x5 = −1. Thus the set

of solutions is {(1− α− β, α, β, 2,−1)}.

We say some systems of equations are “overdetermined”, which means that there are

more equations than varaibles. Overdetermined equations are “usually” inconsistent, but

not always—they can be consistent when some of the equations are redundant.

Example 3.16. The system

x1 + 2x2 + x3 = 1

2x1 − x2 + x3 = 2

4x1 + 3x2 + 3x3 = 4

2x1 − x2 + 3x3 = 5

gives the matrix 
1 2 1 1

2 −1 1 2

4 3 3 4

2 −1 3 5

→


1 2 1 1

0 −5 −1 0

0 −5 −1 0

0 −5 1 3

→


1 2 1 1

0 −5 −1 0

0 0 0 0

0 0 2 3



→


1 2 1 1

0 1 1/5 0

0 0 0 0

0 0 1 3/2

→


1 0 3/5 1

0 1 1/5 0

0 0 0 0

0 0 1 3/2

→


1 0 0 1/10

0 1 0 −3/10

0 0 1 3/2

0 0 0 0


This gives us the solution x1 = 1/10, x2 = −3/10, x3 = 3/2, which you can go back and

check solves the original system.
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This overdetermined system does have a solution, but only because two of the equations

were redundant, as we could see in the second matrix where two lines are identical. In fact

we can go back to the original set of equations, and see that if we add two times the first

equation to the second equation, we get the third—which is the redundancy.

Other systems of equations are “underdetermined”, which means there are more variables

than equations. These systems are usually but not always consistent.

Example 3.17. Let’s consider the system

−x1 + x2 − x3 + 3x4 = 0

3x1 + x2 − x3 − x4 = 0

2x1 + x2 − 2x3 − x4 = 0.

This gives us the matrix
−1 1 −1 3 0

3 1 −1 −1 0

2 1 −2 −1 0

→


1 −1 1 −3 0

0 4 −4 8 0

0 3 −4 5 0

→


1 −1 1 −3 0

0 1 −1 2 0

0 3 −4 5 0



→


1 −1 1 −3 0

0 1 −1 2 0

0 0 −1 −1 0

→


1 −1 1 −3 0

0 1 −1 2 0

0 0 1 1 0



→


1 0 0 −1 0

0 1 −1 2 0

0 0 1 1 0

→


1 0 0 −1 0

0 1 0 3 0

0 0 1 1 0


We see that we can’t “simplify” the fourth column in any way; we don’t have any degrees of

freedom after we fix the first three columns. This means that we can pick x4 to be anything

we want, and the other variables are given by x1 − x4 = 0, x2 − 3x4 = 0, x3 + x4 = 0. Thus

the set of solutions is {(α, 3α,−α, α)}.

Remark 3.18. A system of any size can be either consistent or inconsistent. 0 = 1 is an

inconsistent system with one equation, and

x1 + · · ·+ x100 = 0

x1 + · · ·+ x100 = 1
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is an inconsistent system with a hundred variables and only two equations. In contrast,

x1 = 1

x1 = 1

...
...

x1 = 1

has only one variable, and many equations, and is still consistent.

3.3 Matrix Algebra

3.3.1 The vector space Mm×n

Definition 3.19. If A = (aij) and B = (bij) are m× n matrices, and r ∈ R, then we define

matrix scalar multiplication by

rA = (raij) =


ra11 ra12 . . . ra1n

ra21 ra22 . . . ra2n
...

...
. . .

...

ram1 ram2 . . . ramn

 .

We define matrix addition by

A+B = (aij + bij) =


a11 + b11 a12 + b12 . . . a1n + b1n

a21 + b21 a22 + b22 . . . a2n + b2n
...

...
. . .

...

am1 + bm1 am2 + bm2 . . . amn + bmn

 .

Fact 3.20. Under these operations of addition and scalar multiplication, the set Mm×n is a

vector space, with zero vector given by

0 = (0) =


0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 .

I’m not going to prove this, but you can see that it should be true for the same reason

Rmn is a vector space: they’re both just lists of real numbers, but one is arranged in a column

and the other in a rectangle. The operations are the same.
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Definition 3.21. We define the standard basis matrices Eij to be the matrices with a 1 in

the ij space and zeroes in every other space.

In M4×3 we have

E23 =


0 0 0

0 0 1

0 0 0

0 0 0

 E41 =


0 0 0

0 0 0

0 0 0

1 0 0


The set {Eij : 1 ≤ i ≤ m, j ≤ 1 ≤ n} is the standard basis for Mm×n.

All of this is fairly standard, but also fairly boring; as a vector space, Mm×n really is just

Rmn written in a different order. The interesting aspect of matrices comes from the ability

to multiply them.

3.3.2 Matrix Multiplication

Definition 3.22. If A ∈ M`×m and B ∈ Mm×n, then there is a matrix AB ∈ M`×n whose

ij element is

cij =
m∑
k=1

aikbkj.

If you’re familiar with the dot product, you can think that the ij element of AB is the

dot product of the ith row of A with the jth column of b.

Note that A and B don’t have to have the same dimension! Instead, A has the same

number of columns that B has rows. The new matrix will have the same number of rows as

A and the same number of columns as B.

Example 3.23.[
1 3

2 4

][
5 −1

3 2

]
=

[
1 · 5 + 3 · 3 1 · (−1) + 3 · 2
2 · 5 + 4 · 3 2 · (−1) + 4 · 2

]
=

[
14 5

22 6

]
[

4 6

2 1

][
3 1 5

4 1 6

]
=

[
4 · 3 + 6 · 4 4 · 1 + 6 · 1 4 · 5 + 6 · 6
2 · 3 + 1 · 4 2 · 1 + 1 · 1 2 · 5 + 1 · 6

]
=

[
36 10 56

10 3 16

]
.

Matrix multiplication is associative, by which we mean that (AB)C = A(BC).

Matrix multiplication is not commutative: in general, it’s not even the case that AB and

BA both make sense. If A ∈ M3×4 and B ∈ M4×2 then AB is a 3× 2 matrix, but BA isn’t

a thing we can compute. But even if AB and BA are both well-defined, they are not equal.

http://jaydaigle.net/teaching/courses/2017-spring-214/ 48

http://jaydaigle.net/teaching/courses/2017-spring-214/


Jay Daigle Occidental College Math 214: Linear Algebra

Example 3.24.[
3 5 1

−2 0 2

]
2 1

1 3

4 1

 =

[
3 · 2 + 5 · 1 + 1 · 4 3 · 1 + 5 · 3 + 1 · 1
−2 · 2 + 0 · 1 + 2 · 4 −2 · 1 + 0 · 3 + 2 · 1

]
=

[
15 19

4 0

]


2 1

1 3

4 1


[

3 5 1

−2 0 2

]
=


2 · 3 + 1 · (−2) 2 · 5 + 1 · 0 2 · 1 + 1 · 2
1 · 3 + 3 · (−2) 1 · 5 + 3 · 0 1 · 1 + 3 · 2
4 · 3 + 1 · (−2) 4 · 5 + 1 · 0 4 · 1 + 1 · 2

 =


4 10 4

−3 5 7

10 20 6

 .
Particularly nice things happen when our matrices are square. Any time we have two

n× n matrices we can multiply them by each other in either order (though we will still get

different things each way!).

Example 3.25. [
4 1

−3 5

][
−1 1

1 −2

]
=

[
−3 2

8 −13

]
[
−1 1

1 −2

][
4 1

−3 5

]
=

[
−7 4

10 −9

]
.

3.3.3 Transposes

Definition 3.26. If A is a m×n matrix, then we can form a n×m matrix B by flipping A

across its diagonal, so that bij = aji. We say that B is the transpose of A, and write B = AT .

If A = AT we say that A is symmetric. (Symmetric matrices must always be square).

Example 3.27.

If A =

[
1 3 5

−1 4 2

]
then AT =


1 −1

3 4

5 2

 .
If B =

[
5 3

3 −2

]
then BT =

[
5 3

3 −2

]
and thus B is symmetric.

Fact 3.28. • (AT )T = A.

• (A+B)T = AT +BT .

• (rA)T = rAT .

• If A ∈M`×m and B ∈Mm×n then (AB)T = BTAT .
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3.3.4 Matrices and Systems of Equations

We will do a lot with matrices in the future (a linear algebra class that doesn’t cover general

vector spaces is often called a matrix algebra class). In the current context we mostly want

it to make it easier to talk about systems of equations.

Let

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

...
...

am1x1 + · · ·+ amnxn = bm

be a system of linear equations. Then A = (aij) is its coefficient matrix, and b = (b1, . . . , bm)

is a vector in Rm. If we take x = (x1, . . . , xn) to be a variable vector in Rn, we can rewrite

our linear system as the equation

Ax = b

which is certainly much easier to write down.

3.4 Homogeneous systems and subspaces

Definition 3.29. A system of linear equations Ax = b is called homogeneous if b = 0, that

is, if all of the constant terms are zero. Otherwise, it is non-homogeneous.

It’s pretty clear that every homogeneous system has at least one solution: the solution

where every variable is equal to zero. You can also see, by playing around with the algebra,

that if you add two solutions together you get another solution. And if you multiply a

solution by a scalar, you get another solution. This list of properties should seem familiar.

Proposition 3.30. If Ax = 0 is a homogeneous system of linear equations, and U is the

set of solutions to this system, then U is a subspace of Rn.

Proof. See Homework 5.

Definition 3.31. For a given matrix A, the subspace of solutions to the equation Ax = 0

is called the nullspace N(A) or the kernel ker(A) of the matrix A. The dimension of the

nullspace is the nullity of A.
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Example 3.32. Find a basis for the null space of

[
1 1 1 0

2 1 0 1

]
.

We row reduce the matrix[
1 1 1 0 0

2 1 0 1 0

]
→

[
1 1 1 0 0

0 −1 −2 1 0

]
→

[
1 0 −1 1 0

0 −1 −2 1 0

]
We see that x3 and x4 are fixed variables, and x1, x2 are determined by x3 and x4. (You

could of course do this the other way around). Then we have x1 = x3−x4 and x2 = x4−2x3.

Thus N(A) = {(α− β, β− 2α, α, β)} = {α(1,−2, 1, 0) + β(−1, 1, 0, 1)}, so a basis for the

space is B = {(1,−2, 1, 0), (−1, 1, 0, 1)}.
(We can check that these two elements are both in the nullspace; we will see soon how

to predict the dimension of the nullspace).

In contrast, the set of solutions to a non-homogeneous system is never a subspace. The

easy way to see this is that if all the variables are zero, all the constants must be zero as

well; thus the set of solutions to a non-homogeneous system never includes the zero vector.

But the solution set to a non-homogeneous system is almost a subspace in a very specific

way.

Proposition 3.33. Suppose Ax = b is a non-homogeneous linear system.

If U = N(A)) and x0 is a solution to Ax = b, then the set of solutions to the system

Ax = b is the set

N(A) + x0 = {y + x0 : y ∈ N(A)}.

Proof. We want to show that two sets are equal, so we show that each is a subset of the

other.

First, suppose that x1 is a solution to Ax1 = b. Then we have

b = Ax0

b = Ax1

b− b = Ax1 − Ax0 = A(x1 − x0)

0 = A(x1 − x0).

Thus y = x1 − x0 is a solution to Ax = 0, and then x1 = x0 + y for some y ∈ U .

Conversely, suppose x1 = x0 + y for some y ∈ U . Then

Ax1 = A(x0 + y) = Ax0 + Ay = b + 0 = b.

Thus x1 is a solution to Ax = b.
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Remark 3.34. Notice this did not depend on the matrices specifically; it only depends on

the ability to distribute the matrix across sums of vectors. Operations with this property

are called “linear” and we will discuss them in much more detail in section 4.

Example 3.35. Let’s find a set of solutions to the system

x1 + x2 + x3 = 3

x1 + 2x2 + 3x3 = 6

2x1 + 3x2 + 4x2 = 9.

Gaussian elimination gives
1 1 1 3

1 2 3 6

2 3 4 9

→


1 1 1 3

0 1 2 3

0 1 2 3

→


1 1 1 3

0 1 2 3

0 0 0 0

→


1 0 −1 0

0 1 2 3

0 0 0 0

 .
Taking x3 = α as a free variable, our solution set is {(α, 3−2α, α)} = {(0, 3, 0)+α(1,−2, 1)}.
Indeed, we see that this set corresponds to elements of the vector space spanned by {(1,−2, 1)},
plus a specific solution (0, 3, 0).

Alternatively, we could have solved the homogeneous system first, and seen that the

solution was x1−x3 = 0, x2 + 2x3 = 0 giving us the subspace spanned by {(1,−2, 1)}. Then

we just need to find a solution; to my eyes the obvious solution is (1, 1, 1). So our theorem

tells us that the solution set is {(1, 1, 1) + α(1,−2, 1)}. This may not look like the solution

we got before, but it is in fact the same set, since (1, 1, 1) = (0, 3, 0) + (1,−2, 1).

Example 3.36. Now consider the system

x1 + x2 + x3 = 3

x1 + 2x2 + 3x3 = 3

2x1 + 3x2 + 4x2 = 3.

It’s easy enough to see that this system has no solutions, since the sum of the first two

equations should be the third.

The empty set isn’t a vector space plus a vector, since every vector space contains the

zero vector. But this doesn’t violate our theorem, since our theorem assumes that a solution

exists; no matter what the homogeneous system looks like, it’s always possible for the non-

homogeneous system to have no solutions at all if it contradicts itself. Our theorem only

tells us that if any solution exists, then the homogeneous system tells us how many solutions

exist.
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Example 3.37. Let’s find the set of solutions to

x+ y + z = 0

x− 2y + 2z = 4

x+ 2y − z = 2.

We form the matrix
1 1 1 0

1 −2 2 4

1 2 −1 2

→


1 1 1 0

0 −3 1 4

0 1 −2 2

→


1 1 1 0

0 1 −2 2

0 −3 1 4



→


1 1 1 0

0 1 −2 2

0 0 −5 10

→


1 1 1 0

0 1 −2 2

0 0 1 −2



→


1 0 3 −2

0 1 −2 2

0 0 1 −2

→


1 0 0 4

0 1 0 −2

0 0 1 −2


giving us the sole solution x1 = 4, x2 = −2, x3 = −2.

If we look at the corresponding homogeneous system, we see that we can reduce the

matrix to


1 0 0

0 1 0

0 0 1

 and thus the sole solution to the homogeneous system of equations is

x1 = x2 = x3 = 0. This is indeed a vector space; in fact, it is the trivial vector space. Then

every solution to our non-homogeneous system is a solution to our homogeneous system plus

some element of the trivial vector space; since there is only one vector in the trivial vector

space, there is only one solution to our system.

3.5 Row space and column space

We’ve seen that our theorem is only helpful if a solution exists, so we’d like to know when

solutions to our system exist at all. The concepts of the row space and column space allow

us to determine this neatly.

Definition 3.38. If A = (aij) is a m×n matrix, then each row can be viewed as a vector in

Rn; we call these vectors the row vectors of A. We may notate them as ri = (ai1, ai2, . . . , ain).

Similarly, we can view each column as vector in Rm, and we call these the column vectors

of A. We may notate them as cj = (a1j, a2j, . . . , amj)
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Thus each matrix gives us two sets of vectors. We can look at these vectors and see which

vector spaces they span.

Definition 3.39. If A is a m × n matrix, we say that the span of the row vectors of A is

the row space of A, which we will sometimes denote row(A). It is a subspace of Rn. The

dimension of the row space is the rank of A, denoted rk(A).

The span of the column vectors of A is the column space of A, sometimes denoted col(A).

The concept of column space allows us to answer the question we just asked ourselves.

Proposition 3.40. Let A be a m × n matrix and b a vector in Rm. Then Ax = b has a

solution if and only if b is in col(A).

Proof. The system Ax = b is the same as the system

a11x1 + · · ·+ a1nxn = b1

a21x1 + · · ·+ a2nxn = b2

...
...

am1x1 + · · ·+ amnxn = bm

which we can rewrite as

x1


a11

a21
...

am1

 + x2


a12

a22
...

am2

 + · · ·+ xn


a1n

a2n
...

amn

 =


b1

b2
...

bm


x1c1 + x2c2 + · · ·+ xncn = b.

Thus the equation has a solution precisely when b is in the span of the ci, which is the

column space of A by definition.

Corollary 3.41. the system Ax = b has a solution for every b ∈ Rm if and only if col(A) =

Rm, that is, the column vectors span Rm.

The system has a unique solution if and only if the column vectors are linearly indepen-

dent.

Proof. Ax = b has a solution for every b ∈ Rm if and only if every b ∈ Rm is in the column

space, that is, if the column vectors span Rm.

The column vectors are linearly independent if and only if every vector in their span can

be represented uniquely as a linear combination of the column vectors.
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This doesn’t help that much though, since it doesn’t actually give us a way to figure out

anything about the column space. To learn about that, we shift to looking at the row space,

which is somewhat easier to understand.

Proposition 3.42. Two row-equivalent matrices have the same row space.

Proof. We need to check that each elementary row operation doesn’t change the span of the

set of vectors.

I. (Switch two rows) Switching the order of two vectors does not affect the span at all.

II. (Multiply a row by a nonzero scalar) Multiplying a vector by a non-zero scalar won’t

change the span of the set of vectors, since in any linear combination we can always

just multiply the relevant coefficient by the inverse of our non-zero scalar.

III. (Add a multiple of one row to another) This won’t add anything to the span, since

a linear combination of the new vectors will still be a linear combination of the old

vectors.

This won’t lose anything from the span, since we can undo the row operation, and so

every old vector is a linear combination of new vectors.

Corollary 3.43. Suppose A is a m × n matrix and AR is the matrix obtained by using

Gauss-Jordan elimination to reduce it to reduced row echelon form. Then the non-zero rows

of AR form a basis for the row space of A.

Proof. The non-zero rows of AR are clearly linearly independent, since each one has a 1 in

a column where every other row has a zero. Thus the non-zero rows of AR form a basis for

the space they span, which is the rowspace of AR. But we just saw that AR and A have the

same rowspace, so they form a basis for the rowspace of A.

Example 3.44. Find a basis for the rowspace of


1 5 −9 11

−2 −9 15 −21

3 17 −30 36

−1 2 −3 −1
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1 5 −9 11

−2 −9 15 −21

3 17 −30 36

−1 2 −3 −1

→


1 5 −9 11

0 1 −3 1

0 2 −3 3

0 7 −12 10

→


1 0 6 6

0 1 −3 1

0 0 3 1

0 0 9 3



→


1 0 6 6

0 1 −3 1

0 0 1 1/3

0 0 9 3

→


1 0 0 4

0 1 0 2

0 0 1 1/3

0 0 0 0

→


1 0 0 4

0 1 0 2

0 0 1 1/3

0 0 0 0


So a basis for row(A) is {(1, 0, 0, 4), (0, 1, 0, 2), (0, 0, 1, 1/3)}. The matrix has rank 3.

Remark 3.45. We can use this to find a “simple” basis for any vector space we have a

spanning set for: write a matrix with our spanning set as rows, and row-reduce it until we

have a basis.

Theorem 3.46 (Rank-Nullity). If A ∈Mm×n then rank of A plus nullity of A equals n.

Proof. If U is the reduced row echelon form of A, then Ax = 0 is equivalent to Ux = 0.

Since the matrix has rank r, the matrix U will have r nonzero rows and n − r zero rows;

thus it will have n− r free variables and r lead variables.

The dimension of N(A) is equal to the number of free variables, and thus to n− r.

We have managed to relate the rank and the nullity, but we still want to know about the

column space. But the column space is tied to the row space in a fundamental way.

Proposition 3.47. If A is a m× n matrix, the dimension of the row space of A equals the

dimension of the column space of A.

Proof. We will use a trick with the transpose matrix, since the rows of A are the columns of

AT and vice versa. We will prove that the dimension of the column space of a matrix is at

least as great as the dimension of the row space. But since this result will also hold for the

transpose matrix, this gives us our answer.

Suppose A has rank r, and let U be the row echelon form of A. It will have r leading 1s,

and the columns containing the leading 1s will be linearly independent. (They do not form

a basis for the column space, since we have no reason to believe that the row operations

preserve the span of the columns).
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Let UL be the matrix obtained by deleting the columns of U corresponding to free vari-

ables, leaving only the columns that contain a leading 1. Delete the same columns from A,

and call the resulting matrix AL.

The matrices UL and AL are row-equivalent, so ALx = 0 if and only if ULx = 0, and

since the columns of UL are linearly independent, this happens if and only if x = 0. Thus

we see that the columns of AL are linearly independent. We know that AL will have exactly

r columns, so the column space contains at least r linearly independent vectors, and so the

dimension of the column space is at least r. Thus dim(col(A)) ≥ dim(row(A)) = r.

Now consider the matrix AT . By the previous result, dim(col(AT )) ≥ dim(row(AT )). But

we know that col(AT ) = row(A) and row(AT ) = col(A), so this tells us that dim(row(A)) ≥
dim(col(A)), which combined with the previous result gives us that dim(row(A)) = dim(col(A)).

Corollary 3.48. Let A be a m × n matrix, and let U be the reduced row echelon form of

A. Then the columns of A corresponding to columns of U that contain a leading “1” form a

basis for the columnspace of A.

Proof. We just showed that these columns are linearly independent, and there are r of them.

Thus they are a basis.

Remark 3.49. Note that the columns of U do not (usually) span the column space of A! But

looking at U tells us which columns we should take to find a basis for the column space.

Note that we could also find a basis for the column space by simply taking AT , row

reducing it, and finding a basis for the rowspace of AT .

Example 3.50. Find a basis for the column space of


1 5 −9 11

−2 −9 15 −21

3 17 −30 36

−1 2 −3 −1


We saw that the reduced row echelon form of this matrix has leading ones in the first

three columns. So the first three columns form a basis for the columnspace, and thus a basis

is {(1,−2, 3,−1), (5,−9, 17, 2), (−9, 15,−30,−3)}.

Example 3.51. Find bases for the row, column, and nullspace of


1 −2 1 1 2

−1 3 0 2 −2

0 1 1 3 4

1 2 5 13 5
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We first row reduce the matrix.
1 −2 1 1 2

−1 3 0 2 −2

0 1 1 3 4

1 2 5 13 5

→


1 −2 1 1 2

0 1 1 3 0

0 1 1 3 4

0 4 4 12 3

→


1 0 3 7 2

0 1 1 3 0

0 0 0 0 4

0 0 0 0 3



→


1 0 3 7 2

0 1 1 3 0

0 0 0 0 1

0 0 0 0 3

→


1 0 3 7 0

0 1 1 3 0

0 0 0 0 1

0 0 0 0 0

 .
To find the rowspace, we just take these rows; so a basis for the rowspace is

{(1, 0, 3, 7, 0), (0, 1, 1, 3, 0), (0, 0, 0, 0, 1)}. Thus the rank of the matrix ix 3.

To find the columnspace, we look at the columns corresponding to those with leading 1s,

which are the first, second, and fifth. Thus a basis for the columnspace is

{(1,−1, 0, 1), (−2, 3, 1, 2), (2,−2, 4, 5)}.
To find the nullspace, we see there are two free variables, which we set to be parameters

x3 = α, x4 = β. Then the nullspace is

{(−3α− 7β,−α− 3β, α, β, 0)} = {(−3α,−α, α, 0, 0) + (−7β,−3β, 0, β, 0)}

= {α(−3,−1, 1, 0, 0) + β(−7,−3, 0, 1, 0)}

so a basis for the nullspace is {(−3,−1, 1, 0, 0), (−7,−3, 0, 1, 0)}. The nullity is 2, which is

what we expected from the rank-nullity theorem.

3.6 The identity matrix and matrix inverses

There is one more fundamental object of matrix algebra we would like to study.

Definition 3.52. For any n we define the identity matrix to be In ∈ Mn to have a 1 on

every diagonal entry, and a zero everywhere else. For example,

I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
If A ∈ Mn then InA = A = AIn. Thus it is a multiplicative identity in the ring of n× n

matrices.
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The identity matrix is symmetric (that is, ITn = In). It is already in reduced row echelon

form, so it is easy to see that it has rank n and nullity 0.

Since we have a multiplicative inverse, which is the equivalent of “1” in our matrix

algebra, we would like to define multiplicative inverses, the equivalent of reciprocals. The

definition is not difficult to invent:

Definition 3.53. Let A and B be n× n matrices, such that AB = In = BA. Then we say

that B is the inverse (or multiplicative inverse) of A, and write B = A−1.

If such a matrix exists, we say that A is invertible or nonsingular. If no such matrix

exists, we say that A is singular.

Example 3.54. The identity matrix In is its own inverse, and thus invertible.

The matrices [
2 4

3 1

]
and

[
−1/10 2/5

3/10 −1/5

]
are inverses to each other, as you can check.

Example 3.55. The matrix

[
1 0

0 0

]
has no inverse, since

[
1 0

0 0

][
a b

c d

]
=

[
a b

0 0

]

won’t be the identity for any a, b, c, d. Thus this matrix is singular.

Remark 3.56. If AB = In then BA = In. This isn’t really trivial but we won’t prove it.

As the last example shows, finding the inverse to a matrix is a matter of solving a big

pile of linear equations at the same time (one for each coefficient of the inverse matrix).

Fortunately, we just got good at solving linear equations. Even more fortunately, there’s an

easy way to organize the work for these problems.

Proposition 3.57. Let A be a n×n matrix. Then if we form the augmented matrix
[
A In

]
,

then A is invertible if and only if the reduced row echelon form of this augmented matrix is[
In B

]
for some matrix B, and furthermore B = A−1.

Proof. Let X be a n × n matrix of unknowns, and set up the system of equations implied

by AX = In. This will be the same set of equations we are solving with this row reduction,

and thus a matrix X exists if and only if this system has a solution, which happens if and

only if the reduced row echelon form of
[
A In

]
has no all-zero rows on the A side.

http://jaydaigle.net/teaching/courses/2017-spring-214/ 59

http://jaydaigle.net/teaching/courses/2017-spring-214/


Jay Daigle Occidental College Math 214: Linear Algebra

Corollary 3.58. A n×n matrix A is invertible if and only if the rank of A is n, if and only

if the nullity of A is 0.

Thus A is invertible if and only if the rows are linearly independent, if and only if the

columns are linearly independent, if and only if the rows span Rn, if and only if the columns

span Rn.

Corollary 3.59. A matrix A ∈ Mn is invertible if and only if the equation Ax = b has a

solution for any b ∈ Rn.

Example 3.60. Let’s find an inverse for A =


1 2 3

0 1 4

0 0 1

.

We form and reduce the augmented matrix
1 2 3 1 0 0

0 1 4 0 1 0

0 0 1 0 0 1

→


1 0 −5 1 −2 0

0 1 4 0 1 0

0 0 1 0 0 1

→


1 0 0 1 −2 5

0 1 0 0 1 −4

0 0 1 0 0 1

 .

Thus A−1 =


1 −2 5

0 1 −4

0 0 1

. We can check this by multiplying the matrices back together.

Example 3.61. Find the inverse of B =


1 0 4

1 1 6

−3 0 −10

 .
We form and reduce the augmented matrix

1 0 4 1 0 0

1 1 6 0 1 0

−3 0 −10 0 0 1

→


1 0 4 1 0 0

0 1 2 −1 1 0

0 0 2 3 0 1



→


1 0 4 1 0 0

0 1 2 −1 1 0

0 0 1 3/2 0 1/2

→


1 0 0 −5 0 −2

0 1 2 −4 1 −1

0 0 1 3/2 0 1/2

 .

Thus B−1 =


−5 0 −2

−4 1 −1

3/2 0 1/2

 .
There are some more properties of inverse matrices we’d like to prove, but it turns out

they are much easier to prove from the perspective of functions. We will discuss these

functions in the next section.
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