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4 Linear Functions

4.1 Definition and examples

Definition 4.1. Let U and V be vector spaces, and let L : U → V be a function with

domain U and codomain V . We say L is a linear transformation if:

1. Whenever u1,u2 ∈ U , then L(u1 + u2) = L(u1) + L(u2).

2. Whenever u ∈ U and r ∈ R, then L(ru) = rL(u).

Example 4.2. If A is a m×n matrix, then A gives us a linear transformation from Rn into

Rm, given by A(x) = Ax. That is, our input is a (column) vector in Rn, and our output is

the vector in Rm we get by multiplying our column vector by our matrix.

Geometrically, a linear transformation can stretch, rotate, and reflect, but it cannot bend

or shift.

Example 4.3. Consider the function from R2 to R2 given by a rotation of ninety degrees

counterclockwise. We can see by drawing pictures that the sum of two rotated vectors is the

rotation of the sum of the vectors, and that the rotation of a streched vector is the same as

the strech of a rotated vector. So this is a linear transformation.

Example 4.4. A translation is a function defined by f(x) = x + u for some fixed vector

u. (Geometrically, it corresponds to sliding or translating your input in the direction and

distance of the vector u).

This is not a linear transformation. For instance, f(rx) = rx + u 6= r(x + u) = rf(x)

unless u = 0.

Example 4.5. The function f(x) = x2 is not a linear transformation from R to R, since

f(2x) = (2x)2 = 4x2 6= 2x2 = 2f(x).

Example 4.6. Define a function L : R3 → R2 by L(x, y, z) = (x+ y, 2z − x). We check:

L((x1, y1, z1) + (x2, y2, z2)) = L(x1 + x2, y1 + y2, z1 + z2)

= (x1 + x2 + y1 + y2, 2z1 + 2z2 − x1 − x2)

= (x1 + y1, 2z1 − x1) + (x2 + y2, 2z2 − x2)

= L(x1, y1, z1) + L(x2, y2, z2).

L(r(x, y, z)) = L(rx, ry, rz) = (rx+ ry, 2rz − rx) =

= r(x+ y, 2z − x) = rL(x, y, z).
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Thus L is a linear transformation by definition.

Definition 4.7. Let L : U → V be a linear transformation. If u ∈ U is a vector, we say the

element L(u) ∈ V is the image of u.

If S ⊂ U then we define the image of S to be the set L(S) = {L(u) : u ∈ S} to be the

set of images of elements of S. We say the image of the entire set U is the image of the

function L.

The kernel of L is the set ker(L) = {u ∈ U : L(u) = 0} of elements of U whose image is

the zero vector.

Another way of thinking about linear transformations is that they send lines to lines. In

particular, the image of a subspace under a linear transformation is always a subspace—thus

the image of a line will be either a point or a line.

Proposition 4.8. Let L : U → V be a linear transformation, and let S ⊆ U be a subspace

of U . Then:

1. ker(L) is a subspace of U .

2. The image L(S) of S is a subspace of V .

Proof. 1. See homework 6.

2. We use the subspace theorem:

(a) We wish to show that 0 ∈ L(S). We claim in particular that L(0) = 0: that

is, the image of the zero vector in U must be the zero vector in V . Recall that

0 · v = 0 for any v ∈ V , so we have

L(0) = L(0 · 0) = 0L(0) = 0.

Thus since S is a subspace we have 0 ∈ S and thus 0 ∈ L(S).

(b) Suppose v ∈ L(S) and r ∈ R. Then there is some u ∈ S with L(u) = v, and

since S is a subspace we know that ru ∈ S. Thus

rv = rL(u) = L(ru) ∈ L(S).

(c) Suppose v1,v2 ∈ L(S). Then there exist u1,u2 ∈ S such that L(u1) = v1 and

L(u2) = v2. Since S is a subspace we know that u1 + u2 ∈ S. Then

v1 + v2 = L(u1) + L(u2) = L(u1 + u2) ∈ L(S).
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Corollary 4.9. If L : U → V is a linear transformation, then the image of L is a subspace

of V .

Example 4.10. In our geometric example of a ninety degree counterclockwise rotation, the

kernel is just the origin—nothing gets mapped to the origin except the origin. The image is

the entire plane.

Example 4.11. If A is a matrix, then the linear transformation of A has a kernel precisely

equal to the nullspace of A, since the nullspace is the set of x such that Ax = 0.

A has an image precisely equal to the column space of A, since we know by proposition

3.40 the column space of A is precisely the set of b such that Ax = b has a solution.

In particular, we see that the rank-nullity theorem implies that the dimension of the

kernel plus the dimension of the image is the dimension of the domain. (You can think of

this as saying every dimension of the domain either gets killed, or gives you a dimension of

image).

Example 4.12. Let D([a, b],R) be the space of differentiable functions from the closed

interval [a, b] to the real line. Define the derivative operator D : D([a, b],R) → D([a, b],R)

by D(f) = f ′. First we claim that D is a linear operator: we have that D(f+g) = (f+g)′ =

f ′ + g′ = D(f) +D(g), and D(rf) = (rf)′ + rf ′ = rD(f).

The kernel of D is the space of constant functions, which is a one-dimensional subspace.

The image of D is actually a little hard to see, but it’s actually the set of all continuous

functions on [a, b].

In other contexts we might write d
dx

instead of D for this linear transformation.

Example 4.13. Let C([a, b],R) be the set of all continuous functions on the closed interval

[a, b]. The (indefinite) integral isn’t quite a linear transformation, since there’s an ambiguity

in choice of constant. (This is what we mean when we say something is “not well defined”:

if I tell you to give me the integral of x2, you can’t give me a specific function back so my

question is not precise enough).

But the function I(f) =
∫ x
a
f(t) dt is a linear transformation, since

∫ x
a

(f + g)(t) dt =∫ x
a
f(t) dt +

∫ x
a
g(t) dt and

∫ x
a
rf(t) dt = r

∫ x
a
f(t) dt. In this case the choice of a as the

basepoint resolves the earlier ambiguity.

The kernel of I is the trivial vector space containing only the zero function. The image

is again a bit hard to see, but works out to be the space of differentiable functions with the

property that F (a) = 0.
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This last examples shows an important principle: our derivative and integral linear trans-

formations (almost) undo each other. This is a very important property and we will look at

it on its own in 5.1.

4.2 The Matrix of a Linear Transformation

Some linear transformations are easy to represent, because they come from matrices. In this

subsection we will see that in fact all linear transformations (of finite-dimensional vector

spaces) come from matrices, and see how we can obtain these matrices.

In essence, we can represent a linear transformation L : Rn → Rm with a matrix because

we have a system of coordinates for Rn and Rm; the matrix tells us what happens to each

coordinate.

Example 4.14. Let A =

[
3 5 1

2 −1 3

]
be a matrix, and thus a linear transformation R3 →

R2. Let’s see what happens to each element of the standard basis for R3.

Ae1 =

[
3 5 1

2 −1 3

]
1

0

0

 =

[
3

2

]

Ae1 =

[
3 5 1

2 −1 3

]
0

1

0

 =

[
5

−1

]

Ae1 =

[
3 5 1

2 −1 3

]
0

0

1

 =

[
1

3

]
.

We notice that the image of the standard basis elements are just the columns of the matrix!

This isn’t a coincidence; the columns of our matrix are telling us exactly where our basis

vectors go.

Remark 4.15. This sort of argument is another way to see that the column space of a matrix

is the set b such that Ax = b has a solution.

Proposition 4.16. Let L : Rn → Rm be a linear transformation. Then there is an m × n
matrix A such that L(x) = Ax for every x ∈ Rn.

In particular, the jth column vector of A is given by cj = L(ej).
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Proof. According to the theorem statement, we know that A =
[
c1 c2 . . . cn

]
. So we

just need to check that this matrix gives us the linear transformation L.

First we show that our matrix does the right things on the standard basis vectors. We

see that

Aej =
[
c1 c2 . . . cj . . . cn

]


0

0
...

1
...

0


= cj = L(ej).

Now let u ∈ Rn be any vector. Then we know we can write u =
∑n

i=1 uiei since every

element is some linear combination of basis vectors. Thus we have

Au = A

(
n∑
i=1

uiei

)
=

n∑
i=1

Auiei =
n∑
i=1

uiAei =
n∑
i=1

uiL(ei) by the previous computation

=
n∑
i=1

L(uiei) scalar multiplication

= L

(
n∑
i=1

uiei

)
additivity

= L(u).

Example 4.17. Let’s look at the linear transformation from earlier, of a 90 degree rotation

counterclockwise. This is a transformation from R2 to R2, so we can find a 2 × 2 matrix

representing it. Let’s call the map Rπ/2.

By geometry, we see that Rπ/2(e1) = (0, 1) = e2, and that Rπ/2(e2) = (−1, 0) = −e1.

Thus the matrix is

[
0 −1

1 0.

]
Let’s generalize to any rotation; let Rθ be the rotation counterclockwise by θ. To see

what happens we have to draw the unit circle; we compute that Rθ(e1) = (cos θ, sin θ),

and Rθ(e2) = (cos(θ + π/2), sin(θ + π/2) = (− sin(θ), cos(θ). Thus the matrix of Rθ is[
cos θ − sin θ

sin θ cos θ

]
.

Example 4.18. Define a linear transformation L : R2 → R3 by L(x, y) = (x+ y, x− y, 2x).

First we should check that this is in fact a linear transformation, but I won’t do that here.
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We need to check the image of e1 and e2. We see that

L(e1) = L(1, 0) = (1, 1, 2)

L(e2) = L(0, 1) = (1,−1, 0).

Thus the matrix of L is

AL =


1 1

1 −1

2 0

 .
We can check this by computing 

1 1

1 −1

2 0


[
x

y

]
=


x+ y

x− y
2x


which is exactly what we should get.

We’d like to be able to do this to any vector space, or at least any finite dimensional one.

We need some set of coordinates to let us matricize other linear transformations. Fortunately,

we developed those in section 2: a set of coordinates is a basis.

Definition 4.19. If U is a vector space and E = {e1, . . . , en} is a basis for U , and u ∈ U ,

we can write u = a1e1 + · · ·+ anen. We define the coordinate vector of u with respect to E

by

[u]E =


a1
...

an

 .
The ai are called the coordinates of u with respect to the basis E.

We here observe that every u ∈ U corresponds to exactly one coordinate vector with

respect to E, and vice versa. We will discuss this in more detail in 5.1.

Example 4.20. Let U = P3(x). Then E = {1, x, x2, x3} is a basis for U . Also, F =

{1, 1 + x, 1 + x2, 1 + x3} is a basis for U .

Let f(x) = 1 + 3x+ x2 − x3 ∈ U . Then

[f ]E =


1

3

1

−1

 [f ]F =


−2

3

1

−1

 .
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These are two different vectors of real numbers, but they represent the same element of U ,

just in different bases.

Example 4.21. Let U = R3 and let E = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}. Then if u = (1, 3, 2),

then

[u]E =


−2

1

2

 .
Remark 4.22. If B is the standard basis for Rn, then any time we write a column vector

there’s an implicit


a1
...

an


B

that we just don’t bother to write down.

Lemma 4.23. If U is a vector space and E = {e1, . . . , en} is a basis for U , then the function

[·]E : U → Rn which sends u to [u]E is a linear function.

Proof. Let u,v ∈ U and r ∈ R. We can write

u = a1e1 + · · ·+ anen

v = b1e1 + · · ·+ bnen.

Then

[ru] = [ra1e1 + · · ·+ ranen] = (ra1, . . . , ran) = r(a1, . . . , an) = r[u].

[u + v] = [(a1 + b1)e1 + · · ·+ (an + bn)en] = (a1 + b1, . . . , an + bn)

= (a1, . . . , an) + (b1, . . . , bn) = [u] + [v].

Thus by definition, [·]E is a linear transformation.

Theorem 4.24. Let U and V be finite-dimensional vector spaces, with E = {e1, . . . , en} a

basis for U and F = {f1, . . . , fm} a basis for V . Let L : U → V be a linear transformation.

Then there is a matrix A that represents L with respect to E and F , such that Lu = v if

and only if A[u]E = [v]F . The columns of A are given by cj = [L(ej)]F .

Remark 4.25. This looks really complicated, but it really just says that any linear transfor-

mation is determined entirely by what it does to the elements of some basis; if you have a

basis and you know where your transformation sends each element of that basis, you know

what it does to everything in your space.
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In particular, if we have coordintes for our vector spaces, we can use a matrix to map

one set of coordinates to the other, as if we were working in Rn.

U

[·]E
��

L // V

[·]F
��

u � L //
_

[·]E
��

L(u)
_

[·]F
��

Rn A // Rm [u]E
� A // A[u]E = [L(u)]F

Proof. We just want to show that A[u]E = [L(u)]F for any u ∈ U , where

A = [c1 . . . cn] = [[L(e1)]F . . . [L(en)]F ] .

Our proof is essentially the same as the proof of Proposition 4.16. Let u ∈ U . Since E

is a basis for U we can write u = a1e1 + · · ·+ anen. Then we have

[L(u)]F = [a1L(e1) + · · ·+ anL(en)]F = a1 [L(e1)]F + · · ·+ an [L(en)]F

= a1c1 + · · ·+ ancn;

A[u]E = A [a1e1 + · · ·+ anen]E = A(a1, . . . , an) = [c1 . . . cn] (a1, . . . , an)

= c1a1 + · · ·+ cnan.

Thus we have [L(u)]F = A [u]E, so the matrix A does in fact represent the linear operator

L.

Example 4.26. Let F = {(1, 1), (−1, 1)} be a basis for R2, and let L : R3 → R2 be given

by L(x, y, z) = (x− y− z, x+ y+ z). Find a matrix for L with respect to the standard basis

in the domain and F in the codomain.

L(1, 0, 0) = (1, 1) = f1

L(0, 1, 0) = (−1, 1) = f2

L(0, 0, 1) = (−1, 1) = f2

A =

[
1 0 0

0 1 1

]
.

Example 4.27. Let S be the subspace of C([a, b],R) spanned by {ex, xex, x2ex}, and let D

be the differentiation operator on S. Find the matrix of D with respect to {ex, xex, x2ex}.
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We compute:

D(ex) = ex = s1

D(xex) = ex + xex = s1 + s2

D(x2ex) = 2xex + x2ex = 2s2 + s3

A =


1 1 0

0 1 2

0 0 1

 .
Example 4.28. Let E = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} and F = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} be

bases for R3, and define L(x, y, z) = (x+ y+ z, 2z,−x+ y+ z). We can check this is a linear

transformation.

To find the matrix of L with respect to E and the standard basis, we compute

L(1, 1, 0) = (2, 0, 0)

L(1, 0, 1) = (2, 2, 0)

L(0, 1, 1) = (2, 2, 2).

Thus the matrix with respect to E and the standard basis is

A =


2 2 2

0 2 2

0 0 2

 .
If we want to find the matrix with respect to E and F , we observe that

L(1, 1, 0) = (2, 0, 0) = 2(1, 0, 0) = 2f1

L(1, 0, 1) = (2, 2, 0) = 2(1, 1, 0) = 2f2

L(0, 1, 1) = (2, 2, 2) = 2(1, 1, 1) = 2f3.

Thus the matrix is 
2 0 0

0 2 0

0 0 2

 .
We notice that this matrix is really simple; this is a “good” choice of bases for this linear

transformation.
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In contrast, let’s look at the transformation T (x, y, z) = (x, y, z). Then we have

T (1, 1, 0) = (1, 1, 0) = (1, 1, 0) = f2

T (1, 0, 1) = (1, 0, 1) = (1, 0, 0)− (1, 1, 0) + (1, 1, 1) = f1 − f2 + f3

T (0, 1, 1) = (0, 1, 1) = −(1, 0, 0) + (1, 1, 1) = −f1 + f3.

Thus the matrix of T with respect to E and F is
0 1 −1

1 −1 0

0 1 1

 .
Thus this transformation, which is really simple with respect to the standard basis, is much

more complicated with respect to these bases.

We’ll talk a lot more about this choice of basis idea in section 5.
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