Math 214 Spring 2017 Linear Algebra HW 11 Due Friday, April 21

For all these problems, justify your answers.

1. Let $V = \mathcal{P}_n(x)$ and fix real numbers x_0, x_1, \ldots, x_n be distinct real numbers. For $f, g \in V$, define

$$\langle f,g\rangle = \sum_{i=0}^{n} f(x_i)g(x_i).$$

Prove this is an inner product on V.

(Hint: See partial proof from class)

2. Let w_1, \ldots, w_n be positive real numbers. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, define

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i y_i w_i$$

Prove that this is an inner product on \mathbb{R}^n . (The w_i are called the *weights* of the inner product).

- 3. Let $V = \mathcal{C}([1,3],\mathbb{R})$, with the usual inner product. Find ||1|| and ||x||. Find the projection of 1 + x onto 1 and x.
- 4. Prove the Pythagorean law: if \mathbf{u}, \mathbf{v} are orthogonal, then $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$.
- 5. Let \mathbf{u}, \mathbf{v} be vectors in an inner product space V, with $\mathbf{v} \neq 0$. Let $\mathbf{p} = \text{proj}_{\mathbf{v}} \mathbf{u}$. Prove that $\langle \mathbf{u} - \mathbf{p}, \mathbf{p} \rangle = 0$.
- 6. Let $V = \mathcal{C}([-\pi, \pi], \mathbb{R})$ with the usual inner product. Show that $\{1, \sin(x), \cos(x)\}$ is an orthogonal set. Is it orthonormal?
- 7. Let $V = \mathbb{R}^4$ with the dot product, and let $U = \text{Span}(\{(5,3,1,0), (2,4,3,5), (1,1,1,1)\})$. Use the Gram-Schmidt process to find an orthonormal basis for U.
- 8. Let $V = \mathcal{P}_2(x)$ with the inner product $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t) dt$. Following the Gram-Schmidt process, convert $\{1, x, x^2\}$ into an orthonormal basis.
- 9. Let $V = \mathbb{R}^4$ and let $U = \text{Span}(\{(3, 5, 2, 1), (5, 1, -1, -5)\})$. Find an orthonormal basis for U^{\perp} .
- 10. Let $\mathbf{u}_1, \mathbf{u}_2$ form an orthonormal basis for \mathbb{R}^2 , and suppose \mathbf{v} is a unit vector. If $\mathbf{v} \cdot \mathbf{u}_1 = 1/2$, compute $|\mathbf{v} \cdot \mathbf{u}_2|$.