Math 214 Spring 2017 Linear Algebra HW 2 Due Friday, February 3

- 1. (*) Prove that $\mathcal{F}(\mathbb{R},\mathbb{R})$, the set of functions from $\mathbb{R} \to \mathbb{R}$, is a vector space.
- 2. Prove that if $r\mathbf{u} = \mathbf{0}$, then either r = 0 or $\mathbf{u} = \mathbf{0}$.
- 3. (*) Show that the zero vector is unique. That is, if \mathbf{v} is a vector with the property that $\mathbf{v} + \mathbf{u} = \mathbf{u}$ for every vector $\mathbf{u} \in V$, then $\mathbf{v} = \mathbf{0}$.
- 4. (a) Show that the set $\{(x, x, y, y) | x, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^4 .
 - (b) Show that the set $\{(x, y, 0) | x, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 . What does this subspace look like geometrically?
 - (c) Show that the set $\{(x, 2x, 3x) | x \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 . What does this subspace look like geometrically?
- 5. (a) Show that the set $\{f : \mathbb{R} \to \mathbb{R} | f(0) = 0\}$ is a vector space. (Hint: Show it is a subspace of something we know is a vector space).
 - (b) Show that the set $\{f : \mathbb{R} \to \mathbb{R} | f(0) = 1\}$ is not a vector space.
- 6. (a) Show that if n is a positive integer, then the set $\mathcal{P}_n(x)$ of polynomials of degree at most n is a vector space.
 - (b) Show that the set $\mathcal{C}(\mathbb{R},\mathbb{R})$ the set of continuous functions of one real variable is a vector space.
- 7. Which of the following are vector spaces? You don't need to justify your answers.
 - (a) $\{f : \mathbb{R} \to \mathbb{R} | f(0) = 0 \text{ and } f(1) = 0\}$
 - (b) $\{f : \mathbb{R} \to \mathbb{R} | f(0) = 0 \text{ or } f(1) = 0\}$
 - (c) $\{f : \mathbb{R} \to \mathbb{R} | f \text{ is constant}\}$
 - (d) $\mathcal{C}([a, b], \mathbb{R})$ the space of continuous functions from [a, b] to \mathbb{R} .
- 8. Which of the following are vector spaces? You don't need to justify your answers.

(a)
$$\{(a,b) \in \mathbb{R}^2 | a+b=0\}$$

- (b) $\{(a,b) \in \mathbb{R}^2 | a+b=3\}$
- (c) $\{a_0 + a_1x + a_2x^2 \in \mathcal{P}_2(x) | a_1 = 1\}.$
- (d) $\{a_0 + a_2x^2 + a_3x^3 + a_5x^5 \in \mathcal{P}_5(x)\}.$