Math 214 Spring 2017 Linear Algebra HW 3 Due Friday, February 10

For all these problems, justify your answers; do not just write "yes" or "no".

- 1. (a) Can you write (1, 3, 2, 4) as a linear combination of (1, 0, 1, 0), (0, 1, 0, 2), and (0, 1, 1, 1)?
 - (b) Can you write (1,3,2,4) as a linear combination of (1,0,1,0), (0,1,0,2), and (1,1,1,1)?
 - (c) Write $4x + 6x^3 x^5$ as a linear combination of $x + x^3, x^3 + x^5$, and $x + x^5$.

2. Let
$$V = \mathbb{R}^3$$
.

- (a) Is $S = \{(1, 2, 3), (2, 3, 4), (3, 4, 5)\}$ a spanning set for \mathbb{R}^3 ?
- (b) Is $T = \{(1, 2, 3), (2, 3, 4), (0, 1, 1)\}$ a spanning set for \mathbb{R}^3 ?
- 3. (a) Is $S = \{(1, 1, 0, 0), (1, -1, 0, 0), (0, 0, 1, -1), (0, 0, -1, 1)\}$ a spanning set for \mathbb{R}^4 ? (b) Is $T = \{1, 1 + x, 1 + x^2\}$ a spanning set for $\mathcal{P}_2(x)$?
- 4. Suppose $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n} \subset V$ is a spanning set for V. Show that $T = {\mathbf{v}_1, \mathbf{v}_2 \mathbf{v}_1, \mathbf{v}_3 \mathbf{v}_2, \dots, \mathbf{v}_n \mathbf{v}_{n-1}}$ is a spanning set for V.
- 5. (a) Is S = {(1,1,1), (1,1,0), (1,0,0)} a linearly independent set?
 (b) Is T = {(1,2,3), (4,5,6), (7,8,9)} a linearly independent set?
 (c) Is U = {(3,7,5), (2,4,2), (1,3,1)} a linearly independent set?
- 6. (a) Is S = {1 + x, 1 + x², x + x²} a linearly independent set?
 (b) Is T = {1 + x, 1 + x², x x²} a linearly independent set?
 (c) Is U = {sin², cos², 1} a linearly independent set?
- 7. (*) Suppose $S = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ is linearly independent in V, and $T = {\mathbf{v}_1 + \mathbf{w}, \dots, \mathbf{v}_n + \mathbf{w}}$ is linearly dependent in V. Show that $\mathbf{w} \in \text{Span}(S)$.
- 8. Prove that a set $S = {\mathbf{u}, \mathbf{v}}$ of two vectors is linearly dependent if and only if one is a scalar multiple of the other.