Math 214 Spring 2017 Linear Algebra HW 7 Due *Wednesday*, March 22

For all these problems, justify your answers.

1. Let $L : \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$L((x, y, z)) = \begin{bmatrix} x + y + z \\ 3x - 2y + z \\ 2z \end{bmatrix}.$$

- (a) Prove that L is a linear transformation.
- (b) Find a basis for the kernel and for the image.
- 2. Let $\mathcal{F}(\mathbb{R}, \mathbb{R})$ be the vector space of all functions from \mathbb{R} to \mathbb{R} . Define $E_0 : \mathcal{F}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$ to be the function given by $E_0(f) = f(0)$.
 - (a) Prove that E_0 is a linear transformation.
 - (b) What is the kernel of E_0 ? What is the image?
- 3. Let $P_Z : \mathbb{R}^3 \to \mathbb{R}^3$ be the projection map onto the xy plane, given by P(x, y, z) = (x, y, 0).
 - (a) Prove that P_z is a linear transformation.
 - (b) Find bases for the kernel and image of P_z .
 - (c) Find a matrix for P_z with respect to the standard basis.
 - (d) Prove that $P_z(P_z(\mathbf{u})) = P_z(\mathbf{u})$ for any $\mathbf{u} \in \mathbb{R}^3$. Linear transformations with this property are called *projections* and we will revisit them later. (They are also sometimes called *idempotent* if you're feeling particularly fancy).
- 4. (a) Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. If L((1,2)) = (-2,3) and L((1,-1)) = (5,2), what is L((7,5))?
 - (b) $E = \{(1,1,0), (1,0,1), (0,1,1)\}$ is a basis for \mathbb{R}^3 . Take the vector **u** represented by (2,3,4) in the standard basis, and calculate $[\mathbf{u}]_E$.
 - (c) $F = \{1, 1 + x, 1 + x + x^2, 1 + x + x^2 + x^3\}$ is a basis for $\mathcal{P}_3(x)$. Calculate $[3 + 5x - 2x^2 + x^3]_F$.

- 5. Let $L : \mathbb{R} \to \mathbb{R}$ be a linear transformation. Prove that there is some real number $r \in \mathbb{R}$ such that L(x) = rx for all $x \in \mathbb{R}$. (In other words, any linear transformation from \mathbb{R} to \mathbb{R} is given by multiplication by a scalar).
- 6. (*) Let $L: U \to V$ be a linear transformation, and let $E = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ be a basis for U. Prove that L(U) = Span(L(E)). That is, prove the image of L is just the span of the image of E under L.

Bonus: Don't hand in, because we won't get here by Monday, but practice for test on Friday:

(*) Let $U = \mathcal{P}_3(x)$, and define a linear map $D : U \to U$ by D(f(x)) = f'(x). Let $E = \{1, x, x^2, x^3\}$ be a basis for U.

- 1. What are the kernel and image of D?
- 2. Find a matrix for D with respect to E and E.