Math 214 Test 3 Practice Problems

Instructor: Jay Daigle

This is not a practice test, in the sense that it is not the format I expect the test to be. It is a collection of practice problems. I will update you when I finalize the test format.

I will post at least some solutions soon. I probably won't get a full solutions document written up, though we'll see what happens.

Proofs

- 1. Let Q be the subspace of $\mathcal{P}(x)$ consisting of polynomials with zero constant term. Prove that the function $D: Q \to \mathcal{P}(x)$ given by the derivative is an isomorphism.
- 2. Let $U = \text{span}\{x, \sin(x), \cos(x), x^5, 1\}$. Find an isomorphism between U and \mathbb{R}^5 .
- 3. Suppose V is a vector space and $L: V \to \mathbb{R}^5$ is surjective and dim ker(L) = 2. What can you say about V?
- 4. Suppose $T : \mathbb{R}^5 \to \mathcal{P}_4(x)$ and dim ker(T) = 1. What can you say about $T(\mathbb{R}^5)$?

Determine whether the following operators are invertible

1.
$$L(x, y, z) = (x, x + y, x + z)$$

2. $L(x, y, z) = (x + y, y + z, x + z)$
3. $L(x, y, z, w) = (x + y, y + z, z + w, w + x)$
4. $L(x, y) = (x, y, 3x + 2y)$
5. $L(x, y, z) = (x + y, z + y)$
6. $L: \mathcal{P}_3(x) \to \mathbb{R}^3$ given by $L(f) = (f(1), f(2), f(3)).$

Find inverses for the following operators

1.
$$L(x, y) = (3x + y, 2x - 4y)$$

2. $L(x, y, z) = (3x + y, 2y + 2z, x - z)$
3. $L(x, y, z) = (x + y + z, 2x - 2y, z)$
4. $L: \mathcal{P}_2(x) \to \mathbb{R}^3$ given by $L(f) = (f(0), f(1), f(2)).$

Find the transition matrices between the following bases

1. The standard basis and

$$F = \left\{ \begin{bmatrix} 5\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix}, \begin{bmatrix} 1\\6\\3 \end{bmatrix} \right\}$$

2. The standard basis and

$$F = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$$

3.

4.

$$E = \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix} \right\} \quad \text{and} \quad F = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$
$$E = \left\{ \begin{bmatrix} 3\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\3\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\} \quad \text{and} \quad F = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

Write the given element in the given basis

1. Write (3, 1, 4) in the basis $F = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \right\}.$ 2. Write (2, 7, 1) in the basis $F = \left\{ \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix} \right\}.$ 3. Write (1, -1, 0) in the basis $F = \left\{ \begin{bmatrix} 3\\5\\2\\2 \end{bmatrix}, \begin{bmatrix} 7\\1\\4\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \right\}.$ 4. Write (2, 3, 4) in the basis $F = \left\{ \begin{bmatrix} 0\\1\\0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix} \right\}.$

Find the matrix of the operator with respect to the given basis

Angles and Magnitudes

1. Compute

$$\begin{bmatrix} 3\\1\\2 \end{bmatrix} \cdot \begin{bmatrix} 5\\7\\-1 \end{bmatrix}, \begin{bmatrix} 4\\1\\3\\5 \end{bmatrix} \cdot \begin{bmatrix} 2\\-5\\7\\4 \end{bmatrix}, \begin{bmatrix} 1\\3\\2 \end{bmatrix} \cdot \begin{bmatrix} 4\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 7\\1\\5 \end{bmatrix} \cdot \begin{bmatrix} -3\\1\\1 \end{bmatrix}.$$

2. Find the magnitudes and corresponding unit vectors for

$$\begin{bmatrix} 3\\1\\2 \end{bmatrix}, \begin{bmatrix} 5\\12 \end{bmatrix}, \begin{bmatrix} 4\\2\\-2 \end{bmatrix}, \begin{bmatrix} 7\\-1\\-3 \end{bmatrix}.$$

- 3. Find $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ for
 - (a) $\mathbf{u} = (5, 2), \mathbf{v} = (-3, 4)$
 - (b) $\mathbf{u} = (2, 1), \mathbf{v} = (7, 1)$
 - (c) $\mathbf{u} = (3, 1, 4), \mathbf{v} = (2, 1, 1)$
 - (d) $\mathbf{u} = (2, 1, 1), \mathbf{v} = (-4, -1, -1)$
 - (e) $\mathbf{u} = (5, 0, 0), \mathbf{v} = (3, 2, 1).$

Find parametric and normal equations for

- 1. y = 5x + 2
- 2. 2y = 3x + 4
- 3. y = 3x + 1, z = -2x + 3
- 4. The line through (3, 4) and (1, 7)
- 5. The line through (0, 1) and (6, -3)
- 6. z = 3x + 2y 2
- 7. z = -x + 4y + 3
- 8. The plane through (0, 2, 1), (5, 2, 1), (6, 3, 4)
- 9. The plane through (4, 1, 1), (-2, 3, 1), (5, -2, 3).

Find the nearest point and the distance between

- 1. The point (3,1) and the line y = 4x + 2
- 2. The point (2, -2) and the line y = 3x 7
- 3. The point (2, 1, 4) and the line z = 3x, y = 2x + 2
- 4. The point (2, 4, 4) and the plane z = 3x + 2y + 1
- 5. The point (5,3,1) and the plane z = 4x + 2
- 6. The point (2, 2, 2) and the plane through (1, 1, 1), (3, 4, 5), (7, 2, 1).