Math 214 Final Exam Practice Problems

Instructor: Jay Daigle

This is not a practice test, in the sense that it is not the format I expect the test to be. It is a collection of practice problems. I will update you when I finalize the test format.

I will post at least some solutions soon. I probably won't get a full solutions document written up, though we'll see what happens.

Proofs

- 1. If λ is an eigenvalue of A then prove that λ^{-1} is an eigenvalue of A^{-1} .
- 2. Suppose $S, T: V \to V$ are linear and have the property that $S(T(\mathbf{v})) = T(S(\mathbf{v}))$ for every $\mathbf{v} \in V$. If \mathbf{v} is an eigenvector of T, prove that $S(\mathbf{v})$ is also an eigenvector of T.
- 3. Suppose $L: V \to V$ is a linear transformation of rank k. Prove that L has at most k + 1 distinct eigenvalues.

Things to Ponder

- 1. Find a 4×4 matrix with no real eigenvalues. Is it possible to find a 3×3 matrix with no real eigenvalues?
- 2. In class I said that Tr(A) Tr(B) = Tr(AB). This was an error. Find a counterexample. Find a matrix A such that $Tr(A^2) < 0$.
- 3. What happens if you use the Gram-Schmidt process on a set of vectors that isn't linearly independent?

Diagonalization Theory

1. In class we saw that

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 3 & -1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$$

Multiply out the three matrices on the right and confirm that this works.

2. Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
. What are the eigenvalues of A ? Is $A^2 = A$? Why not?

3. Show the following pairs of matrices are not similar:

$A = \begin{bmatrix} 4\\3 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$		B =	$\begin{bmatrix} 1 & 5 \\ 1 & 1 \end{bmatrix}$
$C = \begin{bmatrix} 2\\ 0\\ 0 \end{bmatrix}$	1 2 0	$\begin{bmatrix} 4\\3\\4 \end{bmatrix}$	D =	$\begin{bmatrix} 3 & 0 & 0 \\ 2 & 2 & 0 \\ 5 & 1 & 3 \end{bmatrix}$
$E = \begin{bmatrix} 3\\ 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 4\\ 8\\ 0 \end{array}$	$\begin{bmatrix} 1 \\ -2 \\ 10 \end{bmatrix}$	F =	$\begin{bmatrix} 4 & 0 & 0 \\ -1 & 5 & 0 \\ 5 & 3 & 12 \end{bmatrix}$
$G = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$	H =	$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$

Eigenvalues and Eigenvectors

Find the characteristic polynomials, eigenvalues (with algebraic multiplicity), and bases for the eigenspaces, of the following matrices.

$1. \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	$4. \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ -1 & 0 & 2 \end{bmatrix}$
$2. \begin{bmatrix} 1 & 2 & 0 \\ -1 & -1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	5. $\begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 3 & 0 \end{bmatrix}$
$3. \begin{bmatrix} 1 & -1 & -1 \\ 0 & 2 & 0 \\ -1 & -1 & 1 \end{bmatrix}$	$6. \begin{bmatrix} 3 & 0 & 0 & 0 \\ 4 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$

Determinants

1. Find all values of k for which
$$A = \begin{bmatrix} k & -k & 3 \\ 0 & k+1 & 1 \\ k & -8 & k-1 \end{bmatrix}$$
 is invertible.

2. Compute the determinants of:

	$\begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix}$	$2 \\ 5 \\ 8$	$\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	$\begin{bmatrix} -4 & 1 & 3 \\ 2 & -2 & 4 \\ 1 & -1 & 0 \end{bmatrix}$
$\begin{bmatrix} 1\\ 2\\ 0\\ 1 \end{bmatrix}$	$-1 \\ 5 \\ 1 \\ 4$	${0 \\ 2 \\ 0 \\ 2 \end{array}$	$\begin{bmatrix} 3 \\ 6 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 & 3 & -1 \\ 1 & 0 & 2 & 2 \\ 0 & -1 & 1 & 4 \\ 2 & 0 & 1 & -3 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 1 \\ 1 & 6 & 4 \end{bmatrix}$

Diagonalization

For each of the following matrices, determine whether it is diagonal. If it is, diagonalize it, then compute A^5 .

1.
$$A = \begin{bmatrix} 5 & 2\\ 2 & 5 \end{bmatrix}$$

2. $A =$	$\begin{bmatrix} -4\\ -3 \end{bmatrix}$	$\begin{bmatrix} 6 \\ 5 \end{bmatrix}$
3. <i>A</i> =	$\begin{bmatrix} 3 & 1 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0\\1\\3 \end{bmatrix}$
4. <i>A</i> =	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$
5. $A =$	$\begin{bmatrix} 1 & 0 \\ 2 & 2 \\ 3 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$
6. $A =$	$\begin{bmatrix} 2 & 0 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 1\\1\\2 \end{bmatrix}$

Orthogonality and Projection

- 1. Suppose $\|\mathbf{u}\| = 3$, $\|\mathbf{u} + \mathbf{v}\| = 4$, $\|\mathbf{u} \mathbf{v}\| = 6$. Find $\|\mathbf{v}\|$.
- 2. Find the orthogonal complement (in \mathbb{R}^n) of the following spaces:

$$\begin{split} W &= \{2x-y=0\}\\ W &= \{2x-y+3z=0\}\\ W &= \{(t,-t,3t)\}\\ W &= \{(1,-1,3,-2),(0,1,-2,1)\}. \end{split}$$

- 3. Find the orthogonal decomposition of
 - (a) (7, -4) with respect to span $\{(1, 1)\}$
 - (b) (1,2,3) with respect to span{(2,-2,1), (-1,1,4)}
 - (c) (4, -2, 3) with respect to span $\{(1, 2, 1), (1, -1, 1)\}$
 - (d) (3, 2, -3, 4) with respect to span $\{(2, 1, 0, 1), (0, -1, 1, 1)\}$.

4. Find the distance between, and nearest point on,

(a) (2,2) and
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

(b) (0,1,0) and $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}$
(c) (2,2,2) and $x + y - z = 0$
(d) (0,0,0) and $x - 2y + 2z = 1$.