
Math 310 Fall 2018
Real Analysis HW 2 Solutions
Due Friday, September 14

You may not discuss the starred problem with classmates, though you should of course
feel free to discuss it with me as much as you like. Linguistic precision is important for this
problem. Submit this problem on a separate, detached sheet of paper.

? Redo Problem: Let S1, S2 be non-empty subsets of R that are bounded above. Let
S = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}. Prove that supS = supS1 + supS2.

For the remainder of these problems, I encourage you to collaborate with your classmates,
as well as to discuss them with me.

1. Prove that 1 is the least upper bound of S = {1− 1
n

: n ∈ N}.
Solution: First we claim that 1 is an upper bound for S. Since 1/n > 0 we know
that −1/n < 0 and thus 1− 1/n < 1, so 1 is an upper bound.

Suppose y < 1. Then 1 − y > 0, and by the corollary to the Archimedean property
in number 5, there is a n ∈ N such that 1/n < 1 − y. Then −1/n > y − 1 and so
1− 1/n > y. But 1− 1/n ∈ S, so y is not an upper bound for S.

Thus if y is an upper bound for S, we know y ≥ 1. So 1 = sup(S) by definition.

2. Let S be a subset of an ordered field. We say that y is a lower bound for S if y ≤ S
for all s ∈ S. We say that y is a greatest lower bound for S, and write y = inf(S) if y
is a lower bound for S, and if x is also a lower bound for S then y ≥ x.

Prove that if S has a greatest lower bound then that lower bound is unique.

Solution:

Let x and y both be greatest lower bounds for S. Then x is a lower bound for S, so
y ≥ x since y is a greatest lower bound.

But y is a lower bound, so x ≥ y since x is a greatest lower bound.

Since y ≥ x and x ≥ y, we must have y = x.

3. Let S ⊂ R be non-empty and bounded below. Prove that S has a greatest lower bound.

Solution: Let T = {−s : s ∈ S}. S is bounded below, so there is some x with x ≤ s
for all s ∈ S. Then −x ≥ −s for all s ∈ S, so −x ≥ t for all t ∈ T . So T is bounded
above, and thus by the least upper bound principle, T has a least upper bound.
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Let y = sup(T ). We claim that −y = inf(S). First we claim that −y is a lower bound.
If s ∈ S, then −s ∈ T so y ≥ −s. Thus −y ≤ s. So y is a lower bound for S.

Now suppose z is also a lower bound for S. Then if t ∈ T , we know −t ∈ S so z ≤ −t
and thus −z ≥ t. So −z is an upper bound for T , and thus −z ≥ y since y = sup(T ).
Thus z ≤ −y. Since z ≤ −y for every lower bound z, we see that −y is a greatest
upper bound for S.

Alternate answer:

Let T be the set of lower bounds of S. We know that T is non-empty because S is
bounded below. If s ∈ S then s ≥ t for every t ∈ T , so T is bounded above. By the
Least Upper Bound principle, T has a least upper bound.

Let t = sup(T ). We claim that t = inf(S). First we need to show that t is a lower
bound for S. Let s ∈ S and suppose s < t. Then by problem 7 from last week’s
homework, there is a t1 ∈ T such that t1 > s; but t1 is a lower bound for S so this is
impossible. Thus s ≥ t for all s ∈ S, and so t is a lower bound for S.

Now suppose t1 is a lower bound for S. Then t1 ∈ T , so t1 ≤ t. Thus t is the greatest
lower bound of S by definition.

4. Let S = { 1
n2 : n ∈ N}. Find the greatest lower bound for S, and prove it is the greatest

lower bound.

Solution: We claim that 0 = inf(S).

For every n ∈ N , we know that n > 0, so 1/n > 0, so 1/n2 > 0. Thus 0 < s for every
s ∈ S.

Now suppose x > 0. By the corollary to the Archimedean property in number 5, we
know there is an n with 1/n < x, and since 1/n ≤ 1 we have 1/n2 ≤ 1/n. Thus
1/n2 < x, so x is not a lower bound for S.

Therefore, if x is a lower bound for S, then x ≤ 0. Thus 0 = inf(S).

5. Prove that for any real number ε > 0, there is a n ∈ N such that 1/n < ε.

Solution: Since ε > 0, we also have 1/ε > 0. By the Archimedean property, there is
an n ∈ N such that n ≥ 1/ε > 0. Then 1/n ≤ ε.

6. Prove that if x < y, then x3 < y3.

Solution:

We divide this into three cases.

Suppose x, y 6= 0. Then x2, xy, y2 > 0. Multiplying x < y by x2 gives us x3 < x2y;
multiplying by xy gives x2y < xy2; and multiplying by y2 gives xy2 < y3. Transitivity
then gives x3 < y3.

If x = 0 then we have 0 < y, so 03 = 0 < y3 implies that x3 < y3.

If y = 0 then we have x < 0. We still know x2 > 0, and multiplying gives x·x2 < 0 = 03

so x3 < y3.

7. Prove that if x is a real number, there is a unique real number y such that y3 = x.

Solution:
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If y1 < y2 then y31 < y32, so y31 6= y32. Thus cube roots are unique. We just need to show
they exist.

Let S = {a ∈ R : a3 < x}. Then S is non-empty, and S is bounded above by max{1, x}
since a3 < a when a ≥ 1. By the Least Upper Bound principle, we know that S has a
least upper bound; let y = sup(S). We claim that y3 = x.

For any real number ε > 0 we know that

y − ε < y < y + ε

(y − ε)3 < y3 < (y + ε)3.

But we also know that (y − ε)3 < x and (y + ε)3 > x because y = sup(S). Thus we
have

(y − ε)3 < x < (y + ε)3

(y − ε)3 − (y + ε)3 < y3 − x < (y + ε)3 − (y − ε)3

−6y2ε− 6yε3 < y3 − x < 6y2ε+ 6yε2.

Thus |y3 − x| < 6yε(y + ε) for any ε > 0.

Now let a > 0 be any positive real number; we can choose ε such that 6yε(y + ε) < a
(by, for instance, taking ε < y, 1

12y2
. Thus |y3 − x| < a for any positive real number a;

so |y − x| = 0 and y3 = x.

8. Let a < b be real numbers. Prove there is a rational number r with a < r < b.

Solution: b − a > 0 so there is a natural number N with 1/N < b − a. Then we
know there is a n ∈ Z such that n

N
≤ b < n+1

N
.

Clearly n
N

is rational. We claim that a < n
N

. Otherwise we have

n

N
≤ a

−a ≤ − n
N

b <
n+ 1

N

b− a < 1

N

which is a contradiction.

If n
N
< b, then we’re done, since we have a < n

N
< b.

Now suppose n
N

= b. Then since 1
N
< b− a we have a < b− 1

N
< b. But b− 1

N
= n−1

N

is a rational number, so we’re done.

9. Prove that R2 with the metric d((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2| is a metric
space.

Solution:

We need to check three things.
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(a) (Non-negativity) It’s clear that d((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2| ≥ 0.
Suppose that d((x1, x2), (y1, y2)) = |x1−y1|+|x2−y2| = 0. Then since |xi−y1| ≥ 0,
we must have |x1−y1| = |x2−y2| = 0 and thus x1 = y1, x2 = y2. Thus if d(~x, ~y) = 0
then ~x = ~y.

(b) (Symmetry)

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2| = |y1 − x1|+ |y2 − x2| = d((y1, y2), (x1, x2)).

(c) (Triangle inequality)

d((x1, x2), (z1, z2)) = |x1 − z1|+ |x2 − z2| = |x1 − y1 + y1 − z1|+ |x2 − y2 + y2 − z2|
≤ |x1 − y1|+ |y1 − z1|+ |x2 − y2|+ |y2 − z2|
= d((x1, x2), (y1, y2)) + d((y1, y2), (x1, x2)).
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