
Math 310 Fall 2018
Real Analysis HW 4 Solutions
Due Friday, September 28

You may not discuss the starred problem with classmates, though you should of course
feel free to discuss it with me as much as you like. Linguistic precision is important for this
problem. Submit this problem on a separate, detached sheet of paper.

? Redo Problem: Let E be a metric space under the discrete metric. Prove that
limn→∞ xn = x converges if and only if there is some N ∈ N such that xn = x for every
n > N .

For the remainder of these problems, I encourage you to collaborate with your classmates,
as well as to discuss them with me.

1. If you didn’t already, finish problem 7 from last homework: show that the set V =
{(x1, x2) : x1x2 = 1, x1 > 0} is closed in R2 with one of the Euclidean, sup, or sum
metric.

Solution:

Fix (x1, x2) such that x1x2 6= 1 and x1 > 0. We want to find some open ball Bε(x1, x2)
so that if (y1, y2) ∈ Bε(x1, x2), then y1y2 6= 1.

Let ε = |x1x2 − 1| > 0. If |x1x2 − y1y2| < ε, we have

|x1x2 − y1y2| < |x1x2 − 1|
0 < |x1x2 − 1| − |x1x2 − y1y2| ≤ |x1x2 − 1− x1x2 + y1y2|

= |y1y2 − 1|

and thus y1y2 6= 1, so y1y2 ∈ U . So we just need to find some open ball so that if
(y1, y2) is in the ball, then |x1x2 − y1y2| < ε.

If (y1, y2) ∈ Bδ(x1, x2), then we see that |x1 − y1| < δ and |x2 − y2| < δ in whichever
metric we choose. Then

|x1x2 − y1y2| = |x1x2 − x1y2 + x1y2 − y1y2|
≤ |x1x2 − x1y2|+ |x1y2 − y1y2|
= |x1| · |x2 − y2|+ |y2| · |x1 − y1|
< |x1|δ + |y2|δ
= δ|x1|+ δ|y2 − x2 + x2| ≤ δ|x1|+ δ|y2 − x2|+ δ|x2|
< δ(|x1|+ |x2|+ δ).
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So choose δ such that δ(|x1| + |x2| + δ) < ε. Then if (y1, y2) ∈ Bδ(x1, x2), we have
|x1x2 − y1y2| < ε = |x1x2 − 1|, and thus |y1y2 − 1| > 0 and so (y1, y2) ∈ U .

Optional:

We can show that such a δ exists like this. If δ < 1, then δ(|x1|+ |x2|+ δ) < δ(|x1|+
|x2| + 1). Then if δ < ε

|x1|+|x2|+1
then we have δ(|x1| + |x2| + 1) < ε. So we just need

to pick some δ that is less than min
{

1, ε
|x1|+|x2|+1

}
.

2. Let (E, d) be a metric space, and let S ⊂ E. Prove that S is bounded if and only if
the set {d(x, y) : x, y ∈ S} ⊂ R is bounded above.

Solution: Suppose S is bounded. Then there exists some x ∈ E and some r > 0
such that S ⊂ Br(x). Let y, z ∈ S. Then d(y, z) ≤ d(y, x) + d(x, z) by the triangle
inequality, and d(y, x), d(x, z) < r since y, z ∈ Br(x). Thus d(y, z) < 2r. This is true
for any y, z ∈ S, so 2r is an upper bound for {d(x, y) : x, y ∈ S}.
Now suppose D is an upper bound for {d(x, y) : x, y ∈ S}. Fix some x ∈ S. Then
for any y ∈ S, d(x, y) < D since D is an upper bound for the set of distances, so
y ∈ BD(x). Thus S ⊂ BD(x), and S is bounded by definition.

3. Let E = R2 and consider the sequence
(
1
n
, 1− 1

n

)
= (1, 0), (1/2, 1/2), (1/3, 2/3), . . . .

Prove that this sequence converges in one of the sup, sum, or Euclidean metric.

Solution:

Sup metric: Let ε > 0, and let N > 1/ε. If n > N then

d(xn, (0, 1)) = max{|1/n− 0|, |(1− 1/n)− 1|} = max{|1/n|, |1/n|} = 1/n < 1/N < ε.

Thus by definition, limn→∞ xn = (0, 1).

4. Let E = R and let xn = n. Prove that (xn) does not converge in the regular absolute
value metric.

Solution:

Suppose limn→∞ xn = L for some L ∈ R. Then for every ε > 0, there is some N ∈ N
such that |xn − L| < ε for all n > N . Then |N + 1 − L| < ε and |N + 2 − L| < ε; by
the triangle inequality, we get 2ε > |N + 2− L+ L−N − 1| = |1|. Thus for all ε > 0
we have 1 < 2ε, which is a contradiction.

Alternate proof:

Suppose limn→∞ xn = L for some L ∈ R. Then for every ε > 0, there is some N ∈ N
such that |xn − L| < ε for all n > N . We can choose a n such that n > N and also
n > L+ 1 by the Archimedean property; then we have ε > |n−L| = n−L > 1. Thus
for all ε > 0 we have ε > 1, which is a contradiction.

5. Let (E, d) be a metric space, and let V be a closed subset of E. Prove that V = V .

Solution:

We know that V ⊂ V . (This was stated in class, but also V is an intersection of sets
all of which contain V ).

Conversely, V is the intersection of all closed sets that contain V . But V is itself a
closed set that contains V , so V is an intersection of V with some other sets; so V ⊂ V .

2



6. Let (E, d) be a metric space, and x ∈ E. Is the closure of Br(x) always equal to the
closed ball Br(x)? Either prove it, or find a counterexample.

Solution:

Let E be a set under the discrete metric, and let x ∈ E. Then B1(x) = {x} is a closed
set, so B1(x) = {x}. But the closed ball B1(x) = E since every point has distance 1
from x. Thus the closed ball is not the closure of the open ball.

7. If (E, d) is a metric space and U ⊂ E, prove the interior of U is the set of all points
x ∈ U such that some open ball containing x is also a subset of U .

Solution:

We want to prove that two sets are equal, so we prove that each is a subset of the
other.

Let x ∈ Ů . We know Ů =
⋃
V⊂UV open V is the union of all open sets inside U . So

there is some open set V with x ∈ V ⊂ U . Then by definition of open set, there is an
open ball Br(x) ⊂ V , and thus Br(x) ⊂ U . So every point in Ů has some open ball
containing it that’s a subset of U .

Conversely, suppose x ∈ U and some open ball B containing x is a subset of U . Then
B is an open subset of U , so B ⊂ Ů . Thus x ∈ Ů .

8. Consider the metric space R under the usual metric. Find the interior of [0, 1] and
prove your answer.

Solution:

We claim the interior Ů is (0, 1).

First we observe that (0, 1) is an open subset of [0, 1]. Thus (0, 1) must be a subset of
Ů .

Now we claim that 0, 1 6∈ Ů . For any r > 0, we have 1+r/2 ∈ Br(1) but 1+r/2 6∈ [0, 1],
so 1 6 inŮ . Similarly, −r/2 ∈ Br(0) but −r/2 6 in[0, 1], so 0 6∈ Ů . Thus Ů is precisely
(0, 1).
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