Math 400 Fall 2018 Cryptology HW 3 Due Thursday, September 21

- 1. Let $(1,2,3,4,5) \mapsto (5,3,4,1,2)$ be the key to a permutation block cipher.
 - (a) Encrypt the plaintext california.
 - (b) Decrypt the ciphertext VENIU TYSIR.
- 2. (a) Compute the inverse of 7 modulo 26.
 - (b) Is the matrix $\begin{bmatrix} 1 & 5 \\ 3 & 2 \end{bmatrix}$ invertible? Why?
 - (c) Find the inverse of $\begin{bmatrix} 4 & 3 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.
- 3. Encrypt the plaintext random using a Hill cipher with key $K = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 1 & 3 \end{bmatrix}$.
- 4. The ciphertext KQXUMU was encrypted by a Hill cipher with key $\begin{bmatrix} 9 & 13 \\ 2 & 3 \end{bmatrix}$. What was the plaintext?
- 5. The ciphertext GEZXDS was encrypted by a 2×2 Hill cipher. The plaintext is solved. Find the encryption key.
- 6. Suppose that the matrix $A = \begin{bmatrix} 2 & 3 \\ 4 & 3 \end{bmatrix}$ is used as the encryption key for a Hill cipher. Find two different (two-letter) plaintexts that encrypt to the same ciphertext. Why did this happen, and why is it a problem?
- 7. Suppose I encrypt a message with the Hill cipher, and the ciphertext is a sequence of one hundred As:

What can you tell me about the plaintext and the key?

Does your answer change if the ciphertext is a sequence of one hundred Bs instead?