5 Derivatives

5.1 The idea of a derivative

Speed is defined to be distance covered divided by time spent; that is, $v=\frac{\Delta x}{\Delta t}$. Unfortunately, this doesn't let us talk about your speed "at" some given time, since at a fixed point in time Δt is zero.

But this is exactly what we said limits were for-studying functions where they don't seem to be defined. We can talk about your "speed at time t " by taking the limit of your speed as Δt approaches zero.

If your position at a time t is given by a function f, then the distance you cover betwee between time t_{0} and time t_{1} is $f\left(t_{1}\right)-f\left(t_{0}\right)$, and the time it takes is $t_{1}-t_{0}$. Thus the average speed over this interval is given by

$$
\frac{f\left(t_{1}\right)-f\left(t_{0}\right)}{t_{1}-t_{0}}
$$

(This formula should look familiar at this point).
Thus we can define your instantaneous speed or speed at time t to be

$$
\lim _{t_{1} \rightarrow t_{0}} \frac{f\left(t_{1}\right)-f\left(t_{0}\right)}{t_{1}-t_{0}}=\lim _{h \rightarrow t_{0}} \frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h}
$$

For example, on Earth dropped objects fall about $f(t)=5 t^{2}$ meters after t seconds. The average speed between time $t=1$ and time $t=2$ is

$$
\frac{f(2)-f(1)}{2-1}=\frac{20-5}{1}=15
$$

meters per second, and the average speed between time $t=0$ and time $t=1$ is

$$
\frac{f(1)-f(0)}{1-0}=5
$$

meters per second. We can generalize further, and ask for the average speed between time $t=1$ and time $t=1+h$, for some interval h. Then we have

$$
\frac{f(1+h)-f(1)}{1+h-1}=\frac{5(1+h)^{2}-5}{h}=5 \frac{h^{2}+2 h+1-1}{h}=5(h+2) .
$$

Thus the average speed over the interval $[1,1+h]$ is $5(h+2)$. Plugging in earlier values: for $[1,2]$ we take $h=1$ and the speed is $5 \cdot 3=15$, and for $[0,1]$ we take $h=-1$ and the speed is $5 \cdot 1=5$.

To find the speed "at" time 1, we calculate

$$
\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} 5(h+2)=10 .
$$

Thus we say the speed "at" $t=1$ is 10 meters per second.
In general, if an object has position $f(t)$ at time t, we can find its average speed over some time interval by the formula

$$
\frac{\nabla f}{\nabla t}=\frac{f\left(t_{2}\right)-f\left(t_{1}\right)}{t_{2}-t_{1}}
$$

and we can find the speed at a time t_{0} by taking the limit as this time interval gets very small:

$$
\lim _{t \rightarrow t_{0}} \frac{f(t)-f\left(t_{0}\right)}{t-t_{0}}=\lim _{h \rightarrow 0} \frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h} .
$$

Note these two expressions are completely equivalent-if we think of setting $t=t_{0}+h$ they are in fact exactly the same.

Example 5.1. If your position is given by $f(t)=t^{2}+t$, then what is your average speed over $[2,3]$? What is your average speed between time 2 and time $2+h$? What is your speed at time $t=2$?

The average speed over $[2,3]$ is

$$
\frac{f(3)-f(2)}{3-2}=\frac{12-6}{1}=6 .
$$

The average speed between 2 and $2+h$ is

$$
\frac{f(2+h)-f(2)}{h}=\frac{(2+h)^{2}+(2+h)-6}{h}=\frac{5 h+h^{2}}{h}=5+h .
$$

The speed at time $t=2$ is

$$
\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{(2+h)^{2}+(2+h)-6}{h}=\lim _{h \rightarrow 0} \frac{5 h+h^{2}}{h}=\lim _{h \rightarrow 0} 5+h=5 .
$$

5.2 The derivative defined

The preceeding discussion motivates the following definition:
Definition 5.2. Let f be a function defined near and at a point a. We say the derivative of f at a is

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

We will often write $f^{\prime}(a)$ or $\frac{d f}{d x}(a)$ for the derivative of f at a. The first is sometimes called "Newtonian notation," while the second is "Leibniz notation."

Remark 5.3. Note that we need two pieces of information here. You hand me a function f and a point a, and I tell you the derivative of f at a. We'll adopt different perspectives from time to time later on in the course.

We can interpret the derivative in a number of ways. If f represents the position of an object, $f^{\prime}(a)$ represents the speed at the time $a . f^{\prime}(a)$ is the slope of the tangent line to the graph of f at a. More generally, $f^{\prime}(a)$ describes "how fast" the output of f changes when the input changes a little bit.

Example 5.4. 1. Let $f(x)=x^{2}+1$. Then

$$
f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{(2+h)^{2}+1-2^{2}-1}{h}=\lim _{h \rightarrow 0} \frac{4 h+h^{2}}{h}=4,
$$

and more generally, for any number a we have

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{(a+h)^{2}-a^{2}}{h}=\lim _{h \rightarrow 0} \frac{2 a h+h^{2}}{h}=2 a .
$$

2. Let $f(x)=x^{3}$, and let's find the derivative at a point a. Then

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{x \rightarrow a} \frac{x^{3}-a^{3}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x-a)\left(x^{2}+a x+a^{2}\right)}{x-a}=\lim _{x \rightarrow a} x^{2}+a x+a^{2}=3 a^{2} .
\end{aligned}
$$

Notice that it wasn't obvious that we could factor $x^{3}-a^{3}$ this way. We could notice this by noticing that plugging in a gives us zero; in general, if plugging a into a polynomial gives zero, we can always factor out a $(x-a)$ term. In this case, though, it might have been easier to just start with the limit as $h \rightarrow 0$, in which case the problem would have essentially solved itself.
3. Let $f(x)=\sqrt{x}$. Then given a number a, we have

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\sqrt{a+h}-\sqrt{a}}{h}=\lim _{h \rightarrow 0} \frac{(a+h)-a}{h(\sqrt{a+h}+\sqrt{a})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{a+h}+\sqrt{a}}=\frac{1}{2 \sqrt{a}}
$$

Note that f is defined at 0 , and we have $f(0)=0$. But by this computation we have $f^{\prime}(0)=\frac{1}{2 \cdot 0}$ which is undefined. This isn't an artifact of the way we computed it; the limit in fact does not exist. Further, this isn't just becasue 0 is on the edge of the domain of f, as we shall see:
4. Let $g(x)=\sqrt[3]{x}$. Then we can compute $g^{\prime}(0)$ and we get

$$
g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt[3]{h}}{h}=\lim _{h \rightarrow 0} \frac{1}{\sqrt[3]{h^{2}}}=+\infty
$$

The cube root function g has no defined derivative at 0 , even though the function is defined there. This brings us to a discussion of ways for a function to fail to be differentiable at a point. (There's always the catchall category of "the limit just doesn't exist," which we won't really discuss because there's not much to say about it).

Example 5.5. 1. Our first example of $g(x)=\sqrt[3]{x}$ is not differentiable at 0 , and the limit

$$
g^{\prime}(0)=\lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h}=+\infty
$$

Graphically, the line tangent to g at 0 is completely vertical; the function is "increasing infinitely fast" at 0 .
2. Any function that is not continuous at a point cannot be differentiable at that point. In particular, if f is differentiable at a, then

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

converges. But the bottom goes to zero, so the top must also go to zero, and we have

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

which is precisely waht it means to be continuous.
Conceptually, if the function isn't continuous, it isn't changing smoothly and so doesn't have a "speed" of change. Graphically, a function that has a disconnect in it doesn't have a clear tangent line.

An example here is the Heaviside function $H(x)$. We have

$$
\lim _{h \rightarrow 0^{+}} \frac{H(h)-H(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{0}{h}=0
$$

but

$$
\lim _{h \rightarrow 0^{-}} \frac{H(h)-H(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{-1}{h}=+\infty .
$$

Since the one-sided limits aren't equal, the limit does not exist.
3. Any function with a sharp corner at a point doesn't have a well-defined rate of change at that point; the change is instantaneous. For instance, if we let $a(x)=|x|$ be the absolute value function, then

$$
a^{\prime}(x)=\lim _{h \rightarrow 0} \frac{a(x+h)-a(x)}{h}
$$

To study piecewise functions we usually break them up and study each piece separately. If $x>0$, then $a(x)=x$ and $a(x+h)=x+h$ for small h. We have

$$
a^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} 1=1 .
$$

Conversely, if $x<0$ then $a(x)=-x$ and $a(x+h)=-x-h$, and

$$
a^{\prime}(x)=\lim _{h \rightarrow 0} \frac{-x-h+x}{h}=\lim _{h \rightarrow 0}-1=-1 .
$$

But if $x=0$ then the left and right limits don't agree again: the right limit is 1 and the left limit is -1 , so the limit does not exist. Thus we have

$$
a^{\prime}(x)= \begin{cases}1 & x>0 \\ -1 & x<0 \\ \text { undefined } & x=0\end{cases}
$$

4. Sometimes a function has a "cusp" at a point. This is a point where the tangent line is vertical, but depending on the side from which you approach, you can get a tangent line that goes up incredibly fast or one that goes down incredibly fast.

Consider the funtion $f(x)=\sqrt[3]{x^{2}}$. We have

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\sqrt[3]{h^{2}}-\sqrt[3]{0}}{h}=\lim _{h \rightarrow 0} \frac{h^{2 / 3}}{h}=\lim _{h \rightarrow 0} \frac{1}{\sqrt[3]{h}}= \pm \infty
$$

This is different from the $\sqrt[3]{x}$ example because the limit is $\pm \infty$ rather than just $+\infty$.

Figure 5.1: A vertical tangent line and a discontinuous function

Poll Question 5.2.1. Let $f(x)=\sqrt{x^{2}-4}$. What is $f^{\prime}(x)$? Where is f differentiable?

Figure 5.2: A corner and a cusp

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)^{2}-4}-\sqrt{x^{2}-4}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-4-\left(x^{2}-4\right)}{h\left(\sqrt{(x+h)^{2}-4}+\sqrt{x^{2}-4}\right)} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h\left(\sqrt{(x+h)^{2}-4}+\sqrt{x^{2}-4}\right)} \\
& =\lim _{h \rightarrow 0} \frac{2 x+h}{\left(\sqrt{(x+h)^{2}-4}+\sqrt{x^{2}-4}\right)} \\
& =\frac{2 x}{2 \sqrt{x^{2}+4}}=\frac{x}{\sqrt{x^{2}-4}} .
\end{aligned}
$$

Thus we see that f is differentiable on $(-\infty,-2) \cup(2,+\infty)$.

5.3 The derivative as a function

Our computation of the derivative of $|\cdot|$, and of several other functions, looks a lot like a function itself. Taking the derivative of a function f in fact gives us a new function f^{\prime} : the rule of this function is that given a number a, we compute the derivative of f at a and return that as our output. Thus f^{\prime} is a function and we can study it the way we did earlier functions.

Definition 5.6. The derivative of a function f is the function

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

Example 5.7. 1. If $f(x)=x^{2}+1$, we computed that $f^{\prime}(x)=2 x$. The domain of f is all reals, and so is the domain of $f^{\prime}(x)$.
2. If $g(x)=\sqrt{x}$ then $g^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. The domain of g is all reals ≥ 0, and the domain of g^{\prime} is all reals >0.
3. We saw above that if $a(x)=|x|$, then

$$
a^{\prime}(x)=\left\{\begin{array}{ll}
1 & x>0 \\
-1 & x<0 \\
\text { undefined } & x=0
\end{array}=\frac{|x|}{x}\right.
$$

The domain of a is all reals and the domain of a^{\prime} is all reals except 0 .
Further, since f^{\prime} is a function we can ask about the derivative of f^{\prime} at a point a.
Definition 5.8. Let f be a function which is differentiable at and near a point a. The second derivative of f at a is the derivative of the function $f^{\prime}(x)$ at a, which is

$$
f^{\prime \prime}(a)=\lim _{h \rightarrow 0} \frac{f^{\prime}(a+h)-f^{\prime}(x)}{h}=\frac{d^{2} f}{d x^{2}}(a) .
$$

This is again a limit and may or may not exist.
Remark 5.9. The Leibniz notation for a second derivative is $\frac{d^{2} f}{d x^{2}}$ and not $\frac{d f^{2}}{d x^{2}}$. Conceptually, you can think of $\frac{d}{d x}$ as a function whose input is the function f and whose output is the derivative function f^{\prime}. The second derivative results from applying this function twice.

Poll Question 5.3.1. What is the second derivative of $f(x)=x^{3}$ at $a=2$?

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}=\lim _{h \rightarrow 0} \frac{3 x^{2} h+3 h^{2}+h^{3}}{h}=\lim _{h \rightarrow 0} 3 x^{2}+3 h+h^{2}=3 x^{2} . \\
f^{\prime \prime}(2) & =\lim _{h \rightarrow 0} \frac{f^{\prime}(2+h)-f^{\prime}(2)}{h}=\lim _{h \rightarrow 0} \frac{3(2+h)^{2}-3 \cdot 2^{2}}{h}=\lim _{h \rightarrow 0} \frac{3\left(4+4 h+h^{2}\right)-12}{h} \\
& =\lim _{h \rightarrow 0} \frac{12 h+3 h^{2}}{h}=\lim _{h \rightarrow 0} 12+3 h=12 .
\end{aligned}
$$

