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5 Derivatives

5.1 The idea of a derivative

Speed is defined to be distance covered divided by time spent; that is, v = ∆x
∆t

. Unfortunately,

this doesn’t let us talk about your speed “at” some given time, since at a fixed point in time

∆t is zero.

But this is exactly what we said limits were for—studying functions where they don’t

seem to be defined. We can talk about your “speed at time t” by taking the limit of your

speed as ∆t approaches zero.

If your position at a time t is given by a function f , then the distance you cover betwee

between time t0 and time t1 is f(t1)−f(t0), and the time it takes is t1− t0. Thus the average

speed over this interval is given by

f(t1)− f(t0)

t1 − t0
.

(This formula should look familiar at this point).

Thus we can define your instantaneous speed or speed at time t to be

lim
t1→t0

f(t1)− f(t0)

t1 − t0
= lim

h→t0

f(t0 + h)− f(t0)

h
.

For example, on Earth dropped objects fall about f(t) = 5t2 meters after t seconds. The

average speed between time t = 1 and time t = 2 is

f(2)− f(1)

2− 1
=

20− 5

1
= 15

meters per second, and the average speed between time t = 0 and time t = 1 is

f(1)− f(0)

1− 0
= 5

meters per second. We can generalize further, and ask for the average speed between time

t = 1 and time t = 1 + h, for some interval h. Then we have

f(1 + h)− f(1)

1 + h− 1
=

5(1 + h)2 − 5

h
= 5

h2 + 2h + 1− 1

h
= 5(h + 2).

Thus the average speed over the interval [1, 1 + h] is 5(h+ 2). Plugging in earlier values: for

[1, 2] we take h = 1 and the speed is 5 · 3 = 15, and for [0, 1] we take h = −1 and the speed

is 5 · 1 = 5.
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To find the speed “at” time 1, we calculate

lim
h→0

f(1 + h)− f(1)

h
= lim

h→0
5(h + 2) = 10.

Thus we say the speed “at” t = 1 is 10 meters per second.

In general, if an object has position f(t) at time t, we can find its average speed over

some time interval by the formula

∇f
∇t

=
f(t2)− f(t1)

t2 − t1
,

and we can find the speed at a time t0 by taking the limit as this time interval gets very

small:

lim
t→t0

f(t)− f(t0)

t− t0
= lim

h→0

f(t0 + h)− f(t0)

h
.

Note these two expressions are completely equivalent—if we think of setting t = t0 + h they

are in fact exactly the same.

Example 5.1. If your position is given by f(t) = t2 + t, then what is your average speed

over [2, 3]? What is your average speed between time 2 and time 2 + h? What is your speed

at time t = 2?

The average speed over [2, 3] is

f(3)− f(2)

3− 2
=

12− 6

1
= 6.

The average speed between 2 and 2 + h is

f(2 + h)− f(2)

h
=

(2 + h)2 + (2 + h)− 6

h
=

5h + h2

h
= 5 + h.

The speed at time t = 2 is

lim
h→0

f(2 + h)− f(2)

h
= lim

h→0

(2 + h)2 + (2 + h)− 6

h
= lim

h→0

5h + h2

h
= lim

h→0
5 + h = 5.

5.2 The derivative defined

The preceeding discussion motivates the following definition:

Definition 5.2. Let f be a function defined near and at a point a. We say the derivative

of f at a is

lim
h→0

f(a + h)− f(a)

h
= lim

x→a

f(x)− f(a)

x− a
.

We will often write f ′(a) or df
dx

(a) for the derivative of f at a. The first is sometimes called

“Newtonian notation,” while the second is “Leibniz notation.”
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Remark 5.3. Note that we need two pieces of information here. You hand me a function f

and a point a, and I tell you the derivative of f at a. We’ll adopt different perspectives from

time to time later on in the course.

We can interpret the derivative in a number of ways. If f represents the position of an

object, f ′(a) represents the speed at the time a. f ′(a) is the slope of the tangent line to the

graph of f at a. More generally, f ′(a) describes “how fast” the output of f changes when

the input changes a little bit.

Example 5.4. 1. Let f(x) = x2 + 1. Then

f ′(2) = lim
h→0

f(2 + h)− f(2)

h
= lim

h→0

(2 + h)2 + 1− 22 − 1

h
= lim

h→0

4h + h2

h
= 4,

and more generally, for any number a we have

f ′(a) = lim
h→0

(a + h)2 − a2

h
= lim

h→0

2ah + h2

h
= 2a.

2. Let f(x) = x3, and let’s find the derivative at a point a. Then

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

x→a

x3 − a3

x− a

= lim
x→a

(x− a)(x2 + ax + a2)

x− a
= lim

x→a
x2 + ax + a2 = 3a2.

Notice that it wasn’t obvious that we could factor x3−a3 this way. We could notice this

by noticing that plugging in a gives us zero; in general, if plugging a into a polynomial

gives zero, we can always factor out a (x−a) term. In this case, though, it might have

been easier to just start with the limit as h→ 0, in which case the problem would have

essentially solved itself.

3. Let f(x) =
√
x. Then given a number a, we have

f ′(a) = lim
h→0

√
a + h−

√
a

h
= lim

h→0

(a + h)− a

h(
√
a + h +

√
a)

= lim
h→0

1√
a + h +

√
a

=
1

2
√
a

Note that f is defined at 0, and we have f(0) = 0. But by this computation we have

f ′(0) = 1
2·0 which is undefined. This isn’t an artifact of the way we computed it; the

limit in fact does not exist. Further, this isn’t just becasue 0 is on the edge of the

domain of f , as we shall see:

4. Let g(x) = 3
√
x. Then we can compute g′(0) and we get

g′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0

3
√
h

h
= lim

h→0

1
3
√
h2

= +∞.
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The cube root function g has no defined derivative at 0, even though the function is

defined there. This brings us to a discussion of ways for a function to fail to be differentiable

at a point. (There’s always the catchall category of “the limit just doesn’t exist,” which we

won’t really discuss because there’s not much to say about it).

Example 5.5. 1. Our first example of g(x) = 3
√
x is not differentiable at 0, and the limit

g′(0) = lim
h→0

g(h)− g(0)

h
= +∞.

Graphically, the line tangent to g at 0 is completely vertical; the function is “increasing

infinitely fast” at 0.

2. Any function that is not continuous at a point cannot be differentiable at that point.

In particular, if f is differentiable at a, then

f ′(a) = lim
x→a

f(x)− f(a)

x− a

converges. But the bottom goes to zero, so the top must also go to zero, and we have

lim
x→a

f(x) = f(a),

which is precisely waht it means to be continuous.

Conceptually, if the function isn’t continuous, it isn’t changing smoothly and so doesn’t

have a “speed” of change. Graphically, a function that has a disconnect in it doesn’t

have a clear tangent line.

An example here is the Heaviside function H(x). We have

lim
h→0+

H(h)−H(0)

h
= lim

h→0+

0

h
= 0

but

lim
h→0−

H(h)−H(0)

h
= lim

h→0−

−1

h
= +∞.

Since the one-sided limits aren’t equal, the limit does not exist.

3. Any function with a sharp corner at a point doesn’t have a well-defined rate of change

at that point; the change is instantaneous. For instance, if we let a(x) = |x| be the

absolute value function, then

a′(x) = lim
h→0

a(x + h)− a(x)

h
.
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To study piecewise functions we usually break them up and study each piece separately.

If x > 0, then a(x) = x and a(x + h) = x + h for small h. We have

a′(x) = lim
h→0

x + h− x

h
= lim

h→0
1 = 1.

Conversely, if x < 0 then a(x) = −x and a(x + h) = −x− h, and

a′(x) = lim
h→0

−x− h + x

h
= lim

h→0
−1 = −1.

But if x = 0 then the left and right limits don’t agree again: the right limit is 1 and

the left limit is −1, so the limit does not exist. Thus we have

a′(x) =


1 x > 0

−1 x < 0

undefined x = 0.

4. Sometimes a function has a “cusp” at a point. This is a point where the tangent line

is vertical, but depending on the side from which you approach, you can get a tangent

line that goes up incredibly fast or one that goes down incredibly fast.

Consider the funtion f(x) =
3
√
x2. We have

f ′(0) = lim
h→0

3
√
h2 − 3

√
0

h
= lim

h→0

h2/3

h
= lim

h→0

1
3
√
h

= ±∞.

This is different from the 3
√
x example because the limit is ±∞ rather than just +∞.

Figure 5.1: A vertical tangent line and a discontinuous function

Poll Question 5.2.1. Let f(x) =
√
x2 − 4. What is f ′(x)? Where is f differentiable?
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Figure 5.2: A corner and a cusp

f ′(x) = lim
h→0

√
(x + h)2 − 4−

√
x2 − 4

h

= lim
h→0

(x + h)2 − 4− (x2 − 4)

h(
√

(x + h)2 − 4 +
√
x2 − 4)

= lim
h→0

2xh + h2

h(
√

(x + h)2 − 4 +
√
x2 − 4)

= lim
h→0

2x + h

(
√

(x + h)2 − 4 +
√
x2 − 4)

=
2x

2
√
x2 + 4

=
x√

x2 − 4
.

Thus we see that f is differentiable on (−∞,−2) ∪ (2,+∞).

5.3 The derivative as a function

Our computation of the derivative of | · |, and of several other functions, looks a lot like

a function itself. Taking the derivative of a function f in fact gives us a new function f ′:

the rule of this function is that given a number a, we compute the derivative of f at a and

return that as our output. Thus f ′ is a function and we can study it the way we did earlier

functions.

Definition 5.6. The derivative of a function f is the function

f ′(x) = lim
h→0

f(x + h)− f(x)

h
.

Example 5.7. 1. If f(x) = x2 + 1, we computed that f ′(x) = 2x. The domain of f is all

reals, and so is the domain of f ′(x).

2. If g(x) =
√
x then g′(x) = 1

2
√
x
. The domain of g is all reals ≥ 0, and the domain of g′

is all reals > 0.
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3. We saw above that if a(x) = |x|, then

a′(x) =


1 x > 0

−1 x < 0

undefined x = 0

=
|x|
x
.

The domain of a is all reals and the domain of a′ is all reals except 0.

Further, since f ′ is a function we can ask about the derivative of f ′ at a point a.

Definition 5.8. Let f be a function which is differentiable at and near a point a. The

second derivative of f at a is the derivative of the function f ′(x) at a, which is

f ′′(a) = lim
h→0

f ′(a + h)− f ′(x)

h
=

d2f

dx2
(a).

This is again a limit and may or may not exist.

Remark 5.9. The Leibniz notation for a second derivative is d2f
dx2 and not df2

dx2 . Conceptually,

you can think of d
dx

as a function whose input is the function f and whose output is the

derivative function f ′. The second derivative results from applying this function twice.

Poll Question 5.3.1. What is the second derivative of f(x) = x3 at a = 2?

f ′(x) = lim
h→0

(x + h)3 − x3

h
= lim

h→0

3x2h + 3h2 + h3

h
= lim

h→0
3x2 + 3h + h2 = 3x2.

f ′′(2) = lim
h→0

f ′(2 + h)− f ′(2)

h
= lim

h→0

3(2 + h)2 − 3 · 22

h
= lim

h→0

3(4 + 4h + h2)− 12

h

= lim
h→0

12h + 3h2

h
= lim

h→0
12 + 3h = 12.
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