Jay Daigle Occidental College Math 114: Calculus 1 (Experienced)

Lab 10 Thursday April 26

Quadratic Approximation

In this class we’ve spent a lot of time on linear approximation: we can approximate a function
with its tangent line, which is the linear function most similar to our starting function. This
simplifies a lot of things, but is only an approximation.

f(@) = f(a) + f'(a)(z — a). (1)

How good this approximation is depends on two things. The first is the distance |z — al;
the approximation is better when your goal point x is close to your starting point a. There
are other techniques (like Fourier series) that don’t have this limitation, but we won’t discuss
them in this course.

The other is the speed at which the derivative changes. If the derivative is constant,
your function is just a line and the “approximation” is perfect. But the faster the derivative
changes, the faster the function deviates from the line.

Thus we might try to get a better approximation using the second derivative, which tells
us how quickly the derivative is changing. So how can we do this?

We're looking for some function g(z) so that

f(@) = f(a) + f'(a)(z — a) + g(a)(z — a)”.

(We want the linear approximation to be the same as , and we want the third derivative to
be zero, so the only thing that can change at all is the degree two term). Taking derivatives
of both sides gives us

f'(@) = f'(a) + 29(a)(x — a)

f"(x) = 2g(a).
Thus we set g(a) = f"(x)/2, and we get the equation
fo) ~ (@) + Fla)e—a) + LD -y 2)

This is the parabola that best approximates our function near a.

(We could extend this logic to get a degree three approximation, or a degree four, etc.
This is called a “Taylor Series” and will be covered at the end of Calculus 2).

We can use quadratic approximation to refine our estimates of functions. We usually
use it in formulas, rather than to estimate specific numbers, since Newton’s method is much
more effective at estimating specific numbers.
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Example

Let’s estimate 1.01?° using a quadratic approximation. We use the function f(z) = (1+x)%,
and center our approximation at x = 0. (Equivalently we could consider g(z) = x** and
center our approximation at x = 1; the way I set it up is a bit more common).
We take f'(x) = 25(1 + 2)** so f/(0) = 25, and f"(z) = 25-24(1 + 2)® so f"(0) =
2524 = 600. Then we have
600 9 9
f(z) ~ 1—1—25(93—0)4—7(3:—0) =1+ 25z + 300x
1.01% = f(.01) ~ 1 +25-.01 + 300 - .0001 = 1+ .25 + .03 = 1.28.

Since 1.01% ~ 1.28243 this is pretty good.
What if we move a bit farther? If we want to estimate 1.04%° we get

1.04% = f(.04) ~ 1+ 25-.04 + 300 - .0016 = 1 + 1 + .48 = 2.48

while 1.04%% ~ 2.66584. We've lost fidelity because our move away is bigger. We've lost it
quickly because f(x) has a huge third derivative.
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Exercises

For all these exercises, I encourage you to plot the graphs of the true function and the
quadratic approximation you're using.

1. Use a quadratic approximation centered at 4 to estimate v/5. How does this compare
to our linear estimate?

Solution:

We use the function f(z) = /z and we compute f'(x) = ﬁ and f"(z) = 4&%3. Then

we have
)=
" -1
f(4):3—2
f@) ~ F@) + -0+ T @ gy
:2+i($—4)—i( 4y
f(5)~2+i—6i4—2+é—i~223483

We see we've slightly overcorrected: rather than being .014 too big, we're now .0012
too small.

2. Use a quadratic approximation to estimate +v/28.
Solution: Take f(z) = ¢/z and a = 27. We have f'(z) = 1272/ and f"(z) = 2z~

and thus
1
f1(27) = 77
, 2 1 )
11(27) = 0 243 2187
F(o) ~ F7) + F7) @ —27) + L (227) (2 — 217
1 1
1 1

3. If f(x) = (v + 5)/2, compute a quadratic approximation centered at x = 1. Use this
to estimate f(1.02).
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Solution:
F'@) = 5o+ 5)
r1) = 5=
f@) = e+ 5
)= e
P m VBt o= ) = - 1P = V6 (14 e - 1) gl - 1?)
f(l.OQ)%\@(lJr%—%) :‘/é(Hﬁ_Wloo)
_ %90\0/6 ~ 2.45354.

4. Let g(z) = ' — 323 + 422 + 4z — 2. Compute the quadratic approximation at z = —2.
Compare that to g(x). Use this to estimate g(—1.97).

Solution:

5. Compute the quadratic approximations of sin(z) and cos(x) centered at zero. Estimate
sin(.01) and cos(.01)? How does this relate to the Small Angle Approximation?

Solution:
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cos'(x —Sm( )
cos’ (0
os"(x —COS( )

) =
) =
) =
cos”(0) =
)~
)~

Q

I2

1+0(x—0)—1(z—-0)>=1-"—

cos(x 5
.99995.

cos(.01

6. Compute the quadratic approximation of e* centered at zero. Estimate e'!. Estimate
1

e=ce".
Solution:
f(z) =e"
f0)=1
fw) = e
f//(()):l
x 1 2 ‘TQ
e %1—1—1(:1:—0)—1—5(:1:—0) :1+x+7
.01
elz1+.1+7:1105
1
61%14—1—1—5:25

7. Compute the quadratic approximation of In(1+4x) centered at zero. Use this to estimate
In(1.1) and In(2). How accurate do you expect these approximations to be? Check the
true answers in Mathematica. Now try approximating In(0).

Solution:
fl(x) = 1+_oc and f"(z) = (1+x T SO f'(0) =1 and f”(0) = —1. Thus

22
In(l+z)~0+2z— —

2
In(l.1) ~ 0+ .1 — % — 095
1n(2)%1—1:.5
2
n(0) ~ 0 —1— % _ _3)2.

Since the true values are ~ .0953 and =~ .7, the first approximation is quite good, and
the second is not too bad. Of course, we can do better either by using more steps or
by taking a higher-order approximation.

In(0) is undefined, but lim, o+ In(0) = —oo. Thus our approximation In(0) ~ —3/2 is
really bad. This is because all the third derivative gets really large near 0.
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8. If f(x) = 6“12, find a formula for the quadratic approximation near zero, and use that
to estimate f(—.1).

9. Compute the quadratic approximation of (1 + z)* centered at 0. Use this formula to
estimate 2'°. Use it to estimate 1.1'°.

Solution:

f(z) = ala—1)(1 + 2)*2
17(0) = a(a — 1)
(1—1—1:)0‘%1+a(:c—0)+a(a2_1)(:c—0)2:1+ozx—|—a(aT_1)x2

10-9
21%1+10-1+T12=1+10+45=56
1109~ 14+10-.1+45-.01 = 2.45.

Bonus: Special Relativity
Many formulas in the theory of special relativity depend on a parameter
1
V) = ——
1) = ——s CE
where v is the velocity, and c is the speed of light.
(a) What is v(0)?

(b) Compute formulas for the linear and quadratic approximations to y(v) centered at
zero. These tell us what happens when v is small relative to the speed of light.

(c) You are probably familiar with the famous formula that F = mc?. This formula
is for “rest energy”, and holds when v = 0. For a moving object, we can compute
the kinetic energy at a given velocity with the formula

E(v) = mc*y(v).

What happens if we replace v with the quadrtic approximation? Does this look
familiar?
Solution:
(a) 7(0) =1.
(b)
-1

V() = 5 (1= (v/e)) ™2 - (=20/c?)
7'(0) =0
v(v) = v(0)+0(v—0)=1
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so the linear approximation isn’t very helpful.

For the quadratic approximation we have

V() = 2 (1= (/) 4+ (1= (] )
V(0) = 5
v(v) = v(0) +0(v — 0) + L(v —0? =1+ U—2

2c2 2c?

(You could also get this by doing a first-order “binomial” expansion on f(z) =
V1 + z and then plugging in z = v/c?).
(c) We get
2 2 /0 2 2 L
E(v) = mc*(1 +v7/2¢*) = mc +§mv .

This is rest energy plus kinetic energy, where kinetic energy is given by the usual
high school physics formula.
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