
Problem 1. (a) Use the definition of limit to prove that limx→2
1

x+3 = 1
5 .

Solution: Let ε > 0 and set δ ≤ 20ε, 1. Then if |x− 2| < δ we have∣∣∣∣ 1

x+ 3
− 1

5

∣∣∣∣ =

∣∣∣∣ 2− x
5(x+ 3)

∣∣∣∣ =
|x− 2|

5|x− 2 + 5|

=
|x− 2|

5|5− (2− x)|
≤ |x− 2|

5(5− |x− 2|)

<
δ

5(5− δ)
≤ 20ε

20
= ε.

(b) Use the definition of limit to prove that limx→1
1

(x−1)2 = +∞.

Solution: Let N > 0 and set δ = 1/
√
N . Then if |x− 1| < δ we have

1

(x− 1)2
=

1

|x− 1|2
>

1

δ2
=

1

1/N
= N.

Problem 2. (a) Use the Squeeze Theorem to show that limx→5(x− 5) sin
(
x2+1
x−5

)
= 0.

Solution: We have

−1 ≤ sin

(
x2 + 1

x− 5

)
≤ 1

−|x− 5| ≤ (x− 5) sin

(
x2 + 1

x− 5

)
≤ |x− 5|.

We see that limx→5−|x− 5| = limx→5 |x− 5| = 0, so by the squeeze theorem we know that

lim
x→5

(x− 5) sin

(
x2 + 1

x− 5

)
= 0.

(b) Compute lim
x→25

√
x− 5

x− 25

Solution:

lim
x→25

√
x− 5

x− 25
= lim
x→25

x− 25

(x− 25)(
√
x+ 5)

= lim
x→25

1√
x+ 5

=
1

10
.

(c) Compute lim
x→0

sin(x2)

sin2(x)

Solution: We use the small angle approximation. We rewrite this as

lim
x→0

sin(x2)

sin2(x)
= lim
x→0

sin(x2)

x2
x

sin(x)

x

sin(x)
= 1.

Problem 3. (a) Directly from the definition, compute f ′(1) where f(x) =
√
x+ 3.

Solution:

f ′(1) = lim
h→0

f(x+ h)− f(x)

h
= lim
h→0

√
4 + h−

√
4

h

= lim
h→0

(4 + h)− 4

h(
√

4 + h+
√

4)
= lim
h→0

1√
4 + h+ 2

=
1

4
.
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(b) Compute g′(x) where g(x) = ln

∣∣∣∣∣earctan(x
2) − 5

4
√
x2 + 1

∣∣∣∣∣.
Solution:

g′(x) =
1

earctan(x2)−5
4√x2+1

·
(earctan(x

2) 2x
1+x4 ) 4

√
x2 + 1− 1

4 (x2 + 1)−3/42x(earctan(x
2) − 5)

2
√
x2 + 1

(c) Find a tangent line to the function f(x) = ex

x at the point given by x = 2.

Solution:

f ′(x) =
ex · x− ex

x2
,

so f ′(2) = 2e2−e2
4 = 1

4e
2. Thus the tangent line has equation

y =
1

4
e2(x− 2) +

1

2
e2.

Problem 4. (a) Let g(x) = 5
√
x9 + x7 + x+ 1. Find (g−1)′(1).

Solution: We see that g(0) = 1, so g−1(1) = 0. Then by the Inverse Function Theorem we have

(g−1)′(1) =
1

g′(g−1(1))
=

1

g′(0)

g′(x) =
1

5
(x9 + x7 + x+ 1)−4/5(9x8 + 7x6 + 1)

g′(0) =
1

5
(1)(1) =

1

5

(g−1)′(1) = 5.

(b) Write a tangent line to the curve y2 = xx cos(x) at the point (π/2,−1).

Solution: Implicit differentiation gives us

2 ln(y) = x cos(x) ln(x)

2y′

y
= cos(x) ln(x)− x sin(x) ln(x) + cos(x)

y′ =
1

2
(cos(x) ln(x)− x sin(x) ln(x) + cos(x)) y.

When x = π/2, y = −1, this gives us

y′ =
1

2
(0 ln(π/2)− π/2 · 1 · ln(π/2) + 0) (−1) =

1

2
(π/2 ln(π/2))

=
π(ln(π)− ln(2))

4

and thus the tangent line has equation

y =
π(ln(π)− ln(2))

4
(x− π/2)− 1.

(c) Find y′ if ey + ln(y) = x2 + 1.

Solution:

ey · y′ + y′

y
= 2x

y′(ey +
1

y
) = 2x

y′ =
2x

ey + 1
y

.
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Problem 5. (a) A cone with height h and base radius r has volume 1
3πr

2h. Suppose we have an inverted
conical water tank, of height 4m and radius 6m. Water is leaking out of a small hole at the bottom of
the tank. If the current water level is 2m and the water level is dropping at 1

9π meters per minute, what
volume of water leaks out every minute?

Solution: We have V = 1
3πr

2h and r = 3h/2, and thus

V =
1

3
π(

3h

2
)2h =

3

4
πh3

V ′ =
9

4
πh2h′

V ′ =
9

4
π(2)2

−1

9π
= 1

So one cubic meter of water is leaking out every minute.

(b) Use two iterations of Newton’s method, starting at 0, to estimate the root of ex − 3x.

Solution: Set f(x) = ex − 3x, and x1 = 0. We have f ′(x) = ex − 3.

x2 = x1 −
f(x1)

f ′(x1)
= 0− 1− 0

1− 3
=

1

2

x3 = x2 −
f(x2)

f ′(x2)
=

1

2
−
√
e− 3

2√
e− 3

=

√
e− 3

2(
√
e− 3)

− 2
√
e− 3

2(
√
e− 3)

=

√
e

6− 2
√
e
.

(c) A radioactive substance begins decaying from 100g of material. When it reaches 10g, it is decaying at
rate of 1g per year. After how many years does this occur?

Solution: If S(t) is the amount of substance in year t, then we have S(t) = Cert, and thus S(0) = 100 =
C. We know that S′(t) = rCert = rS(t), so when S(t) = 10 we have −1 = r10 and thus r = −1/10.
This gives us S(t) = 100e−t/10. Now we can solve 10 = 100e−t/10, which implies 10−1 = e−t/10 and thus
− ln(10) = −t/10. Thus t = 10 ln(10) ≈ 23 years.

Problem 6. (a) If f(x) =
√
x+ tan(πx), use a linear approximation centered at 4 to estimate f(4.1).

Solution: We have f ′(x) = 1
2
√
x

+ π sec2(πx) so f ′(4) = 1
4 + π. Then

f(x) ≈ f(4) + f ′(4)(x− 4) = 2 + 0 + (π + 1/4)(x− 4)

f(4.1) ≈ 2 +
π

10
+

1

40
=

81

40
+

π

10
.

(b) If g(x) = cos(x), use a quadratic approximation centered at 0 to estimate g(.1).

Solution: We have g′(x) = − sin(x) and g′′(x) = − cos(x). So g′(0) = 0 and g′′(0) = −1, and then we
have

g(x) ≈ g(0) + g′(0)(x− 0) +
g′′(0)

2
(x− 0)2 = 1 + 0x− 1

2
x2 = 1− x2/2

g(.1) ≈ 1− .12/2 = .995.

(c) Let g′(x) = g(x) + 3x, and g(2) = 4. Use two steps of Euler’s method to estimate g(4). Is this an
overestimate or an underestimate?

Solution:

g(3) ≈ g′(2)(3− 2) + g(2) = 10(1) + 4 = 14

g(4) ≈ g′(3)(4− 3) + g(3) = 23(1) + 14 = 37.

This is a wild underestimate because the derivative is increasing so rapidly.
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Problem 7. (a) Find the absolute extrema of f(x) = 3x4 − 20x3 + 24x2 + 7 on [0, 5].

Solution: f is a continuous function on a closed ineterval, so it must have an absolute maximum and
an absolute minimum. f ′(x) = 12x3 − 60x2 + 48x = 12x(x2 − 5x + 4) = 12x(x − 4)(x − 1) is defined
everywhere and has roots at 0, 1, 4. The endpoints are 0, 5, so we need to evaluate f at 0, 1, 4, 5.

f(0) = 7

f(1) = 14

f(4) = 3(44)− 5(44) +
3

2
(44) + 7 =

−1

2
44 + 7 = 7− 128 = −121

f(5) = 3 · 54 − 4 · 54 + 54 − 52 + 7 = 7− 25 = −18.

So the absolute maximum is 14 at 1, and the absolute minimum is −121 at 4.

(b) Ten miles from home you remember that you left the water running, which is costing you 90 cents an
hour. Driving home at speed s miles per hour costs you 4(s/10) cents per mile. At what speed should
you drive to minimize the total cost of gas and water?

Solution: The water will be running for 10/s hours and thus the total cost of water will be 900/s
cents. The cost of driving will be 10 · 4(s/10) = 4s cents. Thus our total cost is C(s) = 4s+ 900/s, and
we want to minimize this.

We have C ′(s) = 4 − 900/s2. This has critical points at s = 0 and when 4s2 = 900 and thus s2 = 225
and s = ±15. Clearly we must have s > 0 for physical reasons, so the only relevant critical point is
s = 15.

Checking the second derivative we have C ′′(s) = 1800/s3 and thus C ′′(15) = 8/15 > 0 and thus s = 15
is a local minimum. In fact s is the global minimum for positive values; we can see this since C ′(s) < 0
when 0 < s < 15 and C ′(s) > 0 when s > 15. Thus you should drive at 15 miles per hour.

(c) Classify the relative extrema of h(x) = 3
√
x(x+ 4)

Solution: We have

h′(x) = 3
√
x+

1

3
x−2/3(x+ 4) =

x
3
√
x2

+
x+ 4

3
3
√
x2

=
4x+ 4

3
3
√
x2

so h′(x) is undefined at x = 0 and h′(x) = 0 at x = −1. Thus the critical points are 0,−1. Those are
the possible relative extrema.

We can classify these points in two ways. We can use the first derivative test or the second derivative
test. In these solutions I’ll do both.

For the second derivative test we compute:

h′′(x) =
4(3

3
√
x2)− 4

3 (x+ 1)−23 x
−5/3

9
3
√
x4

=
12

3
√
x2 + 8

3 (x+ 1)x−5/3

9
3
√
x4

h′′(−1) =
12 + 0

9
=

4

3
> 0

h′′(0)“ = ”
0 + 0

0
is undefined

So we see that h has a local minimum at −1 since h′′(−1) > 0, but this tells us nothing about the critical
point at 0; the second derivative test is inconclusive there. So we’re forced to use the first derivative
test.

For the first derivative test we make a chart:

4x+ 4 1

3
3√
x2

h′(x)

x < −1 − + −
−1 < x < 0 + + +

0 < x + + +
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so h has a relative minimum at −1 and neither a maximum nor a minimum at 0.

(The first derivative test was definitely the easier path here).

Problem 8. (a) Find all the critical points of g(x) =
x2 − 8

x+ 3

Solution: The function is undefined at x = −3.

g′(x) = 2x(x+3)−1(x2−8)
(x+3)2 = x2+6x+8

(x+3)2 . The denominator is zero when x = −3, and thus the derivative

is undefined there, but so is the function. The numerator is (x + 2)(x + 4) and thus has roots when
x = −2,−4. So the critical points of the function are −2 and −4.

(b) If −1 ≤ f ′(x) ≤ 3 and f(0) = 0, what can you say about f(4)? Assume f is continuous and differentiable.

Solution: By the Mean Value Theorem, there is some c such that f ′(c) = f(4)−f(0)
4−0 . Since −1 ≤

f ′(c) ≤ 3, we have

−1 ≤ f(4)− f(0)

4
≤ 3

−4 ≤ f(4)− 0 ≤ 12

−4 ≤ f(4) ≤ 12

so f(4) is between −4 and 12.

(c) Prove that x2 − (e2 + 1) ln(x) has exactly two real roots.

Solution: Let g(x) = x2 − (e2 + 1) ln(x). Then g is continuous and differentiable for all real numbers
greater than 0. We see that g(1) = 1 > 0, g(e) = −1 < 0, and g(e2) = e4 − 2e2 − 2 > 0. So by the
intermediate value theorem, g has a root between 1 and e, and another between e and e2.

Now g′(x) = 2x − e2+1
x is zero precisely when x2 = e2+1

2 . This equation has exactly one positive root,
and g is only defined for x > 0, so the derivative of g is zero in exactly one place.

So suppose g has three roots, a < b < c. Then by Rolle’s theorem (or the mean value theorem), there
exists a < x < b and b < y < c such that g′(x) = g′(y) = 0. But g′ has only one root, so this is
impossible; thus g has exactly two roots.

Problem 9. Let j(x) = x4 − 14x2 + 24x + 6. We can compute j′(x) = 4(x + 3)(x − 1)(x − 2) and
j′′(x) = 4(3x2 − 7). Sketch a graph of j.

Solution: The domain of j is all reals. I’m not going to worry about finding roots now, and there are
no obvious symmetries. It’s a polynomial of even degree, so it’s easy to see that limx→±∞ j(x) = +∞.

The function j is defined everywhere and is zero at three points. Thus j has three critical points, at
−3, 1, 2. We compute j at these critical points: j(−3) = 81− 126− 72 + 6 = −111, j(1) = 1− 14 + 24 + 6 =
17, j(2) = 14.

We can make a chart to determine when j increases or decreases:

(x+ 3) (x− 1) (x− 2) j′(x)
x < −3 − − − −
−3 < x < 1 + − − +
1 < x < 2 + + − −

2 < x + + + +

So j is increasing between −3 and 1 and when bigger than 2, and j is decreasing when smaller than −3 or
between 1 and 2. This implies that j has a relative minimum (of −111) at −3, a relative maximum (of 17)
at 1, and a relative minimum of 14 at 2.

j′′(x) = 4(3x2−7) is defined eveyrwhere, and is zero when x2 = 7/3, when x = ±
√

7/3. j′′(x) is positive

when |x| >
√

7/3 and negative when |x| <
√

7/3.
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Graph of j(x)

Problem 10. Let g(x) = arctan(x2 + x). We can compute that g′(x) = 2x+1
1+(x2+x)2 and

g′′(x) =
−6x4 − 12x3 − 8x2 − 2x+ 2

(1 + (x2 + x)2)2
.

Sketch a graph of g.
Solution:
g has domain all reals, and no really useful symmetries. g(x) = 0 when x2 +x = 0 when x = 0 or x = −1.

limx→±∞ x2 + x = +∞, so limx→±∞ g(x) = π/2.
g′(x) = 1

1+(x2+x)2 (2x + 1) = 2x+1
1+(x2+x)2 . The denominator has no roots, so the function is defined

everywhere. The numerator is zero when x = −1/2, so the only critical point of g is x = −1/2. g′(−1) = −1
and g′(0) = 1, so g is decreasing for x < −1/2 and increasing for x > −1/2. Thus g has a minimum at −1/2.

g′′(x) =
−6x4 − 12x3 − 8x2 − 2x+ 2

(1 + (x2 + x)2)2

The denominator is positive everywhere. It’s clear that g′′(0) = 2 > 0, but the numerator is negative if
x = 1 or if x = −2, so there is an inflection point between 0 and 1 and another between 0 and −2. These
are the only inflection points, so the function is concave up near 0 and concave down in the tails.

The graph of g from −2π to 2π
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