Jay Daigle Occidental College Math 212: Multivariable Calculus

8 Surface Integrals

Want to do the same thing for surfaces we did for curves.

8.1 Scalar surface integrals

In section we looked at integrating a function over a curve, where we added up the value
of the function at all points on that curve. We used this to find average values and to find
total mass of a wire from its density.

Often we have a 2-dimensional object or “surface” that we want to do the same adding-up
process for. In this section we’ll see how to do this.

As usual, we want to break our region up into rectangles, evaluate the function on each
rectangle, multiply by the area of the rectangle, and then add them all up. So how do we
do this?

If our surface were a region in the plane, we’'d already know. So describe with a region
in the plane. This is exactly what a parametrization does!

Suppose our surface is parametrized by 7(s,t) for a < s < b,¢ <t < d. We can certainly
divide the st rectangle into a bunch of subrectangles. This corresponds on the surface to a
bunch of (approximate) parallelograms. So we want to multiply the value of the function on
each parallelogram by the area of each parallelogram.

For a given parallelogram, the value of the function f is going to be f(7(s,t)). So we just
need to find the area of the parallelogram.

Recall from section that the area of a parallelogram is the magnitude of the cross
product of the two sides, ||u x U]|. In 6.3 we used this to work out the area of a parallelogram

parametrized by 7(s,t). We saw that the sides were

Ar- Ay- Az~ Or, - 0y, - 0z, =

—i+ ——7+ —k~ —A —A —Ask = 7,(s,t)A
As' * As’ + As 9s " + 8s > * 95" Tols,t)As
Ar- Ay- Azxr- Ox dy 0z

T 2T Tl A+ Z2AL 4+ Atk = (s, t)At
AT A T AT gt T gt Ty (s, 1)

so the area of the parallelogram is
175 (s, t) As X 7y (s, t)At|| = ||Fs(s,t) x 7i(s, t)||AsAt.

Thus we define
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Definition 8.1. The surface integral of the function f(x,y, z) on the surface S parametrized

by 7(s,t) over a planar region R is

/de lim S (7o 1) |17 (50, 1) X (s £ AsAE
S ij
:/f(F(s,t))HFS(s,t) « (s, )] ds dt.
R

Example 8.2. Integrate 222 over cylinder of radius 2, height 3, with base at z = 0.
Parametrization: 7(6, z) = (2cosf,2sin, z).
79(0, 2) = (—2sin 6,2 cosh, 0)
7 (0,z) = (0,0,1)

Tg X 7, = |—2sinf 2cosf 0| = (2cosf,2sind,0)
0 0 1

17 x 7| = V4cos? 6 + 4sin® 6 = V4 = 2.

So

27 3
/x2zds:/ / 4cos’6-2dzdb
s 0 0
21

27 4 1
= 8/ 3cos? 0 df = 24 (— + - sin(29))
0 2 4

Example 8.3. Find the mass of a hemisphere (the half of the sphere with z > 0 of radius

= 24r.
0

1 centimeter with density of z grams per square centimeter.
As with all of our integrals, we need to find a parametrization; then we’ll compute bounds

and the area correction term, and then have a straightforward integral.

We can parametrize the sphere using spherical coordinates with p = 1. Thus we take

(0, ¢) = (cos 0 sin ¢, sin O sin ¢, cos ¢)

http://jaydaigle.net/teaching/courses/2018-spring-212/ 117


http://jaydaigle.net/teaching/courses/2018-spring-212/

Jay Daigle Occidental College Math 212: Multivariable Calculus

for 0 <0 <270 < ¢ <m/2. We compute the parallelogram area by

79(0, ¢) = (— sin b sin ¢, cos f sin ¢, 0)
75(6, @) = (cos b cos ¢, sin b cos ¢, — sin @)
i j k
Th X Ty = |—sinfsing cosfsin @ 0
cosfcos¢p sinfcos¢p —sing

= (—cosfsin® ¢ — O)?—{— (0 — sin @ sin® ¢)j+ (— sin? @sin ¢ cos ¢ — cos? O sin ¢ cos ¢)l¥

= — cos #sin® ¢i — sin @ sin® gzﬁf — sin ¢ cos ngE

|79 X || = \/6032951n4¢+ sin? @ sin* ¢ + sin? ¢ cos? ¢

= \/sin4¢+sin2¢cos2<b= \/sin2<b: | sin ¢|

Since 0 < ¢ < 7/2 we know that sin ¢ > 0 and can drop the absolute values.

Thus our integral is

/Sde:/OQW/OW/QCOS¢-Sin¢d¢d0

27r1 o )2 271'1
= i 5 sin ¢lo’ " dl = i §d9:7r.

Example 8.4. Set up an integral for the surface area of the graph of z = 2% — 3% over the
square —1 <z <1,—-1 <y <1.

To find surface area, we need to integrate the function 1 over the surface. Since this
surface is a graph, parametrization is easy: we can take 7(z,y) = (z,y,2? — y?) for 1 <

x,y < 1. We compute

7 = (1,0, 2z)
7, = (0,1,—2y)
ik
FoxT,=|1 0 20| =-2xi—2y)+k
01 —2y

|7 x 7yl = /1 + 422 + 442,

Then our integral is

7In(5)

1l
1
/ / V1+4e?2 + 42 dyde =4 — 3 arctan(4/3) + 5~ 7.45.
—1J-1
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Working out some of these cross product terms is really annoying. Fortunately, we can

precompute a bunch of them so we don’t have to do it again.

Proposition 8.5. If we parametrize a sphere of radius r with
(0, ) = (r cos O sin ¢, rsin O sin ¢, r cos ¢),

then

HF@ X F¢|| = 7“2 sinqﬁ
If we parametrize a cylinder of radius r with
70, 2) = (rcosf,rsind, z),

then

|79 x 7| = .

If we parametrize the graph of a function f(x,y) with ¥(x,y) = (x,y, f(x,y)), then

Of\>  [Of\?
||Fx><Fy||=\/(a—£> +(a—£> +1

However, we sometimes still need to do surface integrals over non-standard parametriza-

tions.

Example 8.6. Integrate z?/y over the surface parametrized by 7(s,t) = (e, st,3s) for
1<s,t<2.
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We compute

7s(s,t) = (e°,t,3)
(s, t) = (0,s,0)

i j ok
Ty X T =1e5 t 3 = —3si+ se’k
0 s O

|75 X 73]] = V92 + s2€25 = sv/9 + €2

2 r2 2s
/xQ/de:/ sVt erdsdt
s 1 J1ost

2] 21
:/ — (94 ¢*) P 2dt = (94> = (9+e)*?) | —dt
1

3t . 3t
= (0 +¢) — (9.4 7))
In(2)

= (92— (9+6)%2) 2

8.2 Flux Integrals
A more common thing we want to do with surface integrals is compute flux of a vector field.

Definition 8.7. The orientation of a surface is a continuous choice of normal vector at every
point. For a rectangle this just means choosing which side is the “front”; for more complex
surfaces it often tells you which side is “up”.

The area vector of an oriented surface is vector A with direction the orientation, and
magnitude area of the surface.

The flux of a vector ¢ through a flat oriented surface is v - A.

Remark 8.8. Not every surface can be given a consistent orientation, but we won’t really be

worrying about non-orientable surfaces in this course.

Flux measures amount of flow through surface. What if surface isn’t flat? Or flow isn’t
constant? Approximate by a bunch of flat surfaces, flow is locally constant, so can use

constant flux. Then add up.

Definition 8.9. The fluzr integral of the vector field F through the oriented surface S is
[ Fodd=tmY Foad
s
If S is a closed surface oriented outwards, we call this the flux out of S,
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How to compute? Parametrize surface with 7(s,¢). Divide up into small parallelograms.
As in section [8.1] each has area |7 x 73||AsAt. But direction of 7 x 7} is perpendicular to
the parallelogram, so we can take AA =7, x 7,AsAt. Thus

Y FAAxY F (7 x i) AsAt

/ / (7 X 74) dt ds.

Example 8.10. Suppose we want to compute the flux of F (x,y,2) = zi outwards through
a portion of the cylinder of radius 2 centered on the z-axis with x < 0,y < 0,and 0 < z < 2.

We can parametrize this by 7(60, z) = (2cosf,2sin6, z). From proposition we know
that 7 x 7, = (2cosf,2sin#,0) (and we check that this is oriented outwards), so we set up

the integral

2 37/2 2 37/2
/ / (2c0s6,0,0) - (2cosb,2sinb,0) df dz :/ / 4cos® 0 df dz
0 s 0

2
_ / 20 + sin(20)["/2 dz
0

2
:/ Tdz = 2.
0

What if instead we take cylinder centered on y axis with z < 0,2 < 0,0 <y <27
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We now parametrize it with 7(0,y) = (2cos#,y,2sinf) for 7 < 6 < 37/2. We compute

that
ik
T X 7y = |—2sinf 0 2cosf| = (—2cosf,0,—2sinb).
0 1 0

But this vector is oriented inwards: if we take § = 7 then our cross product vector is (2,0, 0)
which points inwards from 7(7,0) = (—2,0,0). So we take the negative of this, and our cross
product vector should be 7, x 7 = (2cos8,0,2sind).

From there, we have a similar integral

2 3m/2 2 3m/2
/ / (2¢0s0,0,0) - (2cos8,0,2sin6) df dy :/ / 4 cos? 6 db dy
0 T 0 ™

2
_ / 20 + sin(20)[/2 dy
0

2
:/ mdy = 2m.
0

Example 8.11 (Gauss’s Law). Flux of vector field Hﬂ% through a sphere of radius R (oriented

outwards).
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We don’t actually need to compute an integral here. The flux is always perpendicular to

the surface of the sphere, so we have

S - - dA dA
£ dA:HFH'IIdAH:W:ﬁ

since we're evaluating on the sphere of radius R. Then the flux integral is just # J g dA
where the integral is just the area of the sphere of radius R, and thus the flux integral is
equal to 47 R*/R? = 4.

But suppose we want to compute the integral normally. We parametrize the unit sphere
by 70, ¢) = (R cossin ¢, Rsin 0 sin ¢, R cos ¢), and we worked out in proposition that

'y x 7y = R* cos f sin® ¢i + R?sin O sin® ¢ + R?sin ¢ cos ¢E,
and this direction is oriented outwards. So the flux integral is
2w T 1 . . .
/ / ﬁ(R cos 0 sin ¢, Rsin 0sin ¢, R cos ¢) - (R? cos 0 sin? ¢7 + R*sin 0 sin® ¢j + R sin ¢ cos ¢k) de df
o Jo
2m s
= / / cos? O sin® ¢ + sin? 0 sin® ¢ + sin ¢ cos® ¢ dop df
0271' 07r 2 2
:/ / sinqﬁdgbd@:/ —cosgb]()’rd@:/ 2df = 4.
o Jo 0 0
Proposition 8.12. o If S is the graph of z = f(x,y) over R, then
[ Fdd= [ Py sew)- (-4 f,+ R dedy
s R
o [f S is a cylinder oriented away from the z-axis of radius R, then
/ F-dA = / F(R, 0, z) - (cos 0i + sin 07) R dz df.
s T
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e If S is a sphere of radius R oriented outwards, then
- T
s s 171l
= / ﬁ(R, 6, ¢) - (sin ¢ cos 0i + sin ¢ sin 0] + cos ¢E)R2 sin ¢ do df.
T

Example 8.13. Find flux of F (x,y,2) = T+ yj through the surface oriented downwards
given by 7(s,t) = (2s,s+t,1+s—t)for 0 <s<1,0<¢t < 1.

We compute

— (=1 —1)i+ (04 2)] + (2 — 0)k = —2i + 2] + 2k.

But this vector is oriented upwards, so we take its opposite 2 — 2;' — 2k. Then our integral

11 1 1
//(23,s+t,0)-(2,—2,—2)dsdt:/ / 2s — 2tdsdt
o Jo o Jo

1

1
:/ 52—2st|(1)dt:/ 1—2tdt
0 0

=t—t*5 =0.

is

Thus there is no net flux.
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8.3 Stokes’s Theorem

First we have to define the boundary of a surface. I can give a technical definition: a point
P is on the boundary of S if no open ball B, = {Q : ||Q — P|| < €} centered at P is entirely
contained in S. But more generally we understand what the boundary of a surface is: it’s
the set of all the points on the edge.

We're going to want to worry about the orientation of a surface relative to its boundary.
We want the orientations to be compatible: we determine compatibility via the right-hand
rule. We pick an orientation for S by choosing a normal vector for every point. The boundary
is oriented compatibly if the (clockwise or counterclockwise) circulation corresponding to this
normal vector points in the same direction as the boundary.

Once our boundaries are oriented compatibly, we can make an argument very similar to
Green’s theorem. We can compute the circulation around the boundary with a line integral.
Or, instead, we can compute the integral of the curl over the entire surface; this integrates

all the circulation density, and thus gives us the total circulation.

Theorem 8.14 (Stokes). If S is a smooth oriented surface with piecewise smooth oriented
boundary C (with matching orientations of S and C'), and F is a smooth vector field on an

open region containing S and C', then

/F’-dF:/VxF’-d[f.
C S

Remark 8.15. If S is a region within the xy plane, then this is precisely Green’s Theorem.

Example 8.16. Let ﬁ(m,y, z) = —2yi + 2zj. Find fcﬁ - dr’ where C is a circle parallel to
yz plane centered in = axis.

Compute V x F = 4k. Curl is parallel to circle, so flux of curl through disk is zero. Thus
circulation is zero.

Where C' is parallel to the xy plane, centered on z axis, radius r.
/ﬁ-dF:/VxF-dfT: |V x F| - area of S = 4mr?.
c S

Example 8.17. Let’s consider the surface of a lightbulb, whose base is given x? + y? = 1.
Let F(z,y, 2) = e %z + (sin(zyz) + y + 1)] + €= sin(z2)k, and find flux of V x F outward
through the lightbulb’s surface.
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Attempting to do this surface integral would clearly be terrible even if we had a good
parametrization for the surface. Fortunately we can avoid this, since the entire boundary of
the lightbulb is just 2% + y* = 1. Thus

/vXﬁ.dﬁz/ﬁ.df
s c
2 .
:/ F(cosf,sin6,0) - (—sinf, cosb,0) dd
027r
:/ (cosf,sinf 4+ 1,0) - (—sin b, cos0,0) do
027r
:/ —cos@sinf + cos O sin 0 + cos 0 do
027r
:/ cosfdf = sin 2" = 0.
0

Notice that this doesn’t depend on the specific shape of the lightbulb!

Stokes’s theorem is particularly nice when we’re studying an irrotational field—one with

zero curl.

Example 8.18. Let
= —yi+aj
B =
(.Z’, Y, Z) 22 + yg

This vector field is, among other things, the magnetic field induced by a current running

down a wire along the z-axis.
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We saw this field in example , where we calculated that V x E(l‘, Y,z) = 0. Let’s
compute the circulation of B counterclockwise around (s, a five-pointed star at the height
z = T+ e, centered at the z-axis.

We don’t want to try to compute that directly; fortunately, we don’t have to. We first
might try using Stokes’s theorem to integrate the curl (which is zero) over the interior; but
we can’t do that, because Bisn't actually defined at * = y = 0. So we have to do something
more complex.

Let’s start by computing a relatively easy integral, over C}, the counterclockwise circle
of radius 1 in the zy plane. We parametrize this with 7(¢) = (cost,sint,0), and we get the

integral

27 2
/ (—sint,cost) - (—sint,cost) dt = / dt = 2.
0 0

Now let’s consider the cylindrical-ish surface S whose base is C; and whose top is Cy. T
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Then we see that the boundary of S (oriented outwards) is C; — Cy (since we need to

reverse the orientation of Cy to match the orientation of S). Thus by Stokes’s theorem we

&/Vxédﬂz/ B.ar
S C1—C2

But V x B = 6, so this tells us that

have

:/ B-di— | B-dr
C1 C2

/E-dﬁz/ B - dF = 2m.
CQ Cl

Remark 8.19. This last example shows us something even more dramatic. The actual details
of the curve Cy are completely irrelevant; only the fact that it can combine with C to form
the boundary of a tube that doesn’t intersect the z-axis. This argument shows that any
closed curve that winds around the z-axis once will have an integral of +27, with the sign

depending on the relative orientation of C and Cs.

We can also turn this process backwards.

Definition 8.20. Let G be a vector field. If V x F = é, then we say that F is a vector
potential for G. If G has a vector potential, we say it is a curl field—which just means that

it 1s the curl of some vector field.

Proposition 8.21. [fé s a curl field, then any two oriented surfaces with the same oriented

boundary have the same flur integral.

Proof. Suppose G is a curl field, and S; and S, are two oriented surfaces with the same

oriented boundary C. Then by Stokes’s theorem, we have

/éwﬂ:/ﬁﬁ: G. dA
S1 C So
]

This result should remind you of the path-independence result for line integrals. Two
paths with the same boundary have the same integral if the vector field is a gradient field;
two surfaces with the same boundary have the same integral if the vector field is a curl field.

We used the curl to test whether a vector field is a gradient field. Now we need a similar

tool to test whether a vector field is a curl field.
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